{"title":"A Poromechanical Framework for Internal Interactions Induced by Solid Inclusions","authors":"Yifan Yang, Giuseppe Buscarnera","doi":"10.1002/nag.3952","DOIUrl":null,"url":null,"abstract":"The framework of poromechanics is generalized to simulate the multiscale behavior of porous media subjected to internal loadings stemming from the growth of solid inclusions. This generalization is designed to enable the study of anisotropic internal stress generation from solid growth within the pores, while recovering isotropic fluid‐induced loading as a particular case. For this purpose, a mathematical strategy to define constitutive tensors in a thermodynamically consistent form is proposed, thus offering new opportunities for determining the poromechanical properties of a porous solid through advanced experimentation or micromechanical models. The framework is specialized by means of established elastic solutions for single pore–matrix interaction, as well as through homogenization schemes considering the interaction among congruent pores. In particular, the second Eshelby solution and the Tanaka–Mori–Benveniste homogenization scheme are used to derive a microporoelastic model. At an elemental scale, the model is tested under mixed control conditions by replicating different scenarios of geomaterial testing. In addition, the model characteristics are outlined with reference to inelastic microscopic loadings replicating chemo‐mechanical forcing, such as expansive crystal formation. Through a series of parametric analyses, it is shown that the microstructure of the pores significantly influences the properties of porous media. Most notably, it is shown that the effects of a solid forming within the pores depend in a highly nonlinear fashion on the constitutive characteristics of the inhomogeneities and can therefore not be readily quantified or predicted without models capturing the diverse multiscale interactions among pores, inhomogeneities, and matrix.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"29 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3952","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The framework of poromechanics is generalized to simulate the multiscale behavior of porous media subjected to internal loadings stemming from the growth of solid inclusions. This generalization is designed to enable the study of anisotropic internal stress generation from solid growth within the pores, while recovering isotropic fluid‐induced loading as a particular case. For this purpose, a mathematical strategy to define constitutive tensors in a thermodynamically consistent form is proposed, thus offering new opportunities for determining the poromechanical properties of a porous solid through advanced experimentation or micromechanical models. The framework is specialized by means of established elastic solutions for single pore–matrix interaction, as well as through homogenization schemes considering the interaction among congruent pores. In particular, the second Eshelby solution and the Tanaka–Mori–Benveniste homogenization scheme are used to derive a microporoelastic model. At an elemental scale, the model is tested under mixed control conditions by replicating different scenarios of geomaterial testing. In addition, the model characteristics are outlined with reference to inelastic microscopic loadings replicating chemo‐mechanical forcing, such as expansive crystal formation. Through a series of parametric analyses, it is shown that the microstructure of the pores significantly influences the properties of porous media. Most notably, it is shown that the effects of a solid forming within the pores depend in a highly nonlinear fashion on the constitutive characteristics of the inhomogeneities and can therefore not be readily quantified or predicted without models capturing the diverse multiscale interactions among pores, inhomogeneities, and matrix.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.