A meso-scale model to predict flow stress and microstructure during hot deformation of IN718WP

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2025-02-06 DOI:10.1016/j.ijplas.2025.104271
Nilesh Kumar, Franz Miller Branco Ferraz, Ricardo Henrique Buzolin, Esmaeil Shahryari, Maria C. Poletti, Surya D. Yadav
{"title":"A meso-scale model to predict flow stress and microstructure during hot deformation of IN718WP","authors":"Nilesh Kumar, Franz Miller Branco Ferraz, Ricardo Henrique Buzolin, Esmaeil Shahryari, Maria C. Poletti, Surya D. Yadav","doi":"10.1016/j.ijplas.2025.104271","DOIUrl":null,"url":null,"abstract":"This research presents a dislocation-based hot deformation model to address a nickel-based superalloy's flow stress response and discontinuous dynamic recrystallization (DDRX) behavior. The developed model can predict the flow curves and subsequent microstructure evolutions during the hot deformation. The evolution of microstructure-reliant internal variables was predicted and validated thoroughly. Furthermore, the influence of strain rate and temperature on the glide and climb velocities have also been discussed to reveal more insights into the microstructural development. Dislocation density and DDRX fraction predicted from the model was compared with dislocation density and DDRX fraction obtained from electron backscattered diffraction (EBSD) measurements with reasonable matching. Higher temperatures and slower strain rates provide favorable conditions for DDRX in this alloy. The importance of this model relies on its prediction capability in terms of flow curve, mobile and immobile dislocation densities, DDRX fraction, grain size and dislocation velocities. Single set of parameters were obtained from twelve experimental curves and rest of the eleven curves were predicted by the model using those parameters. The present research approach is helpful to predict the multiple flow curves along with the corresponding microstructure evolution in LSFE materials.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"62 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104271","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents a dislocation-based hot deformation model to address a nickel-based superalloy's flow stress response and discontinuous dynamic recrystallization (DDRX) behavior. The developed model can predict the flow curves and subsequent microstructure evolutions during the hot deformation. The evolution of microstructure-reliant internal variables was predicted and validated thoroughly. Furthermore, the influence of strain rate and temperature on the glide and climb velocities have also been discussed to reveal more insights into the microstructural development. Dislocation density and DDRX fraction predicted from the model was compared with dislocation density and DDRX fraction obtained from electron backscattered diffraction (EBSD) measurements with reasonable matching. Higher temperatures and slower strain rates provide favorable conditions for DDRX in this alloy. The importance of this model relies on its prediction capability in terms of flow curve, mobile and immobile dislocation densities, DDRX fraction, grain size and dislocation velocities. Single set of parameters were obtained from twelve experimental curves and rest of the eleven curves were predicted by the model using those parameters. The present research approach is helpful to predict the multiple flow curves along with the corresponding microstructure evolution in LSFE materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
Mitigating embrittlement of sigma phase in dual-phase high-entropy alloys through heterostructure design A meso-scale model to predict flow stress and microstructure during hot deformation of IN718WP Strain-rate and temperature dependent optimum precipitation sizes for strengthening in medium-entropy alloys Attribution of heterogeneous stress distributions in low-grain polycrystals under conditions leading to damage Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1