A roadmap toward the synthesis of life

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2025-02-06 DOI:10.1016/j.chempr.2024.102399
Christine M.E. Kriebisch, Olga Bantysh, Lorena Baranda Pellejero, Andrea Belluati, Eva Bertosin, Kun Dai, Maria de Roy, Hailin Fu, Nicola Galvanetto, Julianne M. Gibbs, Samuel Santhosh Gomez, Gaetano Granatelli, Alessandra Griffo, Maria Guix, Cenk Onur Gurdap, Johannes Harth-Kitzerow, Ivar S. Haugerud, Gregor Häfner, Pranay Jaiswal, Sadaf Javed, Job Boekhoven
{"title":"A roadmap toward the synthesis of life","authors":"Christine M.E. Kriebisch, Olga Bantysh, Lorena Baranda Pellejero, Andrea Belluati, Eva Bertosin, Kun Dai, Maria de Roy, Hailin Fu, Nicola Galvanetto, Julianne M. Gibbs, Samuel Santhosh Gomez, Gaetano Granatelli, Alessandra Griffo, Maria Guix, Cenk Onur Gurdap, Johannes Harth-Kitzerow, Ivar S. Haugerud, Gregor Häfner, Pranay Jaiswal, Sadaf Javed, Job Boekhoven","doi":"10.1016/j.chempr.2024.102399","DOIUrl":null,"url":null,"abstract":"The synthesis of life from non-living matter has captivated and divided scientists for centuries. This bold goal aims at unraveling the fundamental principles of life and leveraging its unique features, such as its resilience, sustainability, and ability to evolve. Synthetic life represents more than an academic milestone—it has the potential to revolutionize biotechnology, medicine, and materials science. Although the fields of synthetic biology, systems chemistry, and biophysics have made great strides toward synthetic life, progress has been hindered by social, philosophical, and technical challenges, such as vague goals, misaligned interdisciplinary efforts, and incompletely addressing public and ethical concerns. Our perspective offers a roadmap toward the synthesis of life based on discussions during a 2-week workshop with scientists from around the globe.","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.102399","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of life from non-living matter has captivated and divided scientists for centuries. This bold goal aims at unraveling the fundamental principles of life and leveraging its unique features, such as its resilience, sustainability, and ability to evolve. Synthetic life represents more than an academic milestone—it has the potential to revolutionize biotechnology, medicine, and materials science. Although the fields of synthetic biology, systems chemistry, and biophysics have made great strides toward synthetic life, progress has been hindered by social, philosophical, and technical challenges, such as vague goals, misaligned interdisciplinary efforts, and incompletely addressing public and ethical concerns. Our perspective offers a roadmap toward the synthesis of life based on discussions during a 2-week workshop with scientists from around the globe.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Homeostatic artificial cells enable self-protection in prototissue spheroids Zwitterionic polymer intertwined metal-organic framework-based quasi-solid-state electrolyte for long cycle life dual-ion batteries A roadmap toward the synthesis of life Coordination-templated construction of single-crystal covalent organic frameworks Enhanced X-ray luminescence in one-dimensional Cu–I coordination polymers via ligand halogen engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1