Monitoring the On-Surface Boronic Acid Condensation Process at the Nanoscale Using Tip-Enhanced Raman Spectroscopy

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-02-06 DOI:10.1021/acsnano.4c17728
Yuanzhi Xia, Kim Greis, Chengcheng Xu, Naresh Kumar, Renato Zenobi
{"title":"Monitoring the On-Surface Boronic Acid Condensation Process at the Nanoscale Using Tip-Enhanced Raman Spectroscopy","authors":"Yuanzhi Xia, Kim Greis, Chengcheng Xu, Naresh Kumar, Renato Zenobi","doi":"10.1021/acsnano.4c17728","DOIUrl":null,"url":null,"abstract":"The on-surface condensation of boronic acids is a key step in fabricating functional interfaces with tailored properties; yet, a clear understanding of the molecular structural transformations involved remains a significant challenge. Here, we directly monitor the condensation reaction in a self-assembled monolayer of 4-mercaptophenylboronic acid (MPBA) on Au(111) using tip-enhanced Raman spectroscopy (TERS). The structural evolution in the MPBA adlayer is tracked via the emergence of new peaks, blue shifts, and intensity changes in characteristic Raman bands. Hyperspectral TERS imaging provides comprehensive insight into molecular transformations, including B–O–B bond formation, increased molecular constraints, and an evolution in molecular orientation. Furthermore, density functional theory simulations confirm that the boroxine trimer is the primary product of the on-surface condensation reaction. This study provides significant insights into on-surface boronic acid condensation chemistry for the rational design of functionalized surfaces with targeted chemical properties.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"62 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17728","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The on-surface condensation of boronic acids is a key step in fabricating functional interfaces with tailored properties; yet, a clear understanding of the molecular structural transformations involved remains a significant challenge. Here, we directly monitor the condensation reaction in a self-assembled monolayer of 4-mercaptophenylboronic acid (MPBA) on Au(111) using tip-enhanced Raman spectroscopy (TERS). The structural evolution in the MPBA adlayer is tracked via the emergence of new peaks, blue shifts, and intensity changes in characteristic Raman bands. Hyperspectral TERS imaging provides comprehensive insight into molecular transformations, including B–O–B bond formation, increased molecular constraints, and an evolution in molecular orientation. Furthermore, density functional theory simulations confirm that the boroxine trimer is the primary product of the on-surface condensation reaction. This study provides significant insights into on-surface boronic acid condensation chemistry for the rational design of functionalized surfaces with targeted chemical properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硼酸的表面缩合是制造具有定制特性的功能界面的关键步骤;然而,清楚地了解其中涉及的分子结构转变仍然是一项重大挑战。在这里,我们利用尖端增强拉曼光谱(TERS)直接监测了金(111)上 4-巯基苯硼酸(MPBA)自组装单层的缩合反应。通过特征拉曼光谱带中出现的新峰、蓝移和强度变化,跟踪 MPBA 吸附层的结构演变。高光谱 TERS 成像提供了对分子转化的全面了解,包括 B-O-B 键的形成、分子约束的增加以及分子取向的演变。此外,密度泛函理论模拟证实硼氧三聚体是表面缩合反应的主要产物。这项研究为合理设计具有目标化学特性的功能化表面提供了表面硼酸缩合化学的重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Regulating Chemical Bonds in Halide Frameworks for Lithium Superionic Conductors Bioinspired Hierarchical Photonic Structures with Controllable Polarization and Color for Optical-Multiplexed Information Encryption Monitoring the On-Surface Boronic Acid Condensation Process at the Nanoscale Using Tip-Enhanced Raman Spectroscopy In-Pixel Dual-Band Intercorrelated Compressive Sensing Based on MoS2/h-BN/PdSe2 Vertical Heterostructure Mechanisms of Enhanced Electrochemical Performance by Chemical Short-Range Disorder in Lithium Oxide Cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1