Yuanzhi Xia, Kim Greis, Chengcheng Xu, Naresh Kumar, Renato Zenobi
{"title":"Monitoring the On-Surface Boronic Acid Condensation Process at the Nanoscale Using Tip-Enhanced Raman Spectroscopy","authors":"Yuanzhi Xia, Kim Greis, Chengcheng Xu, Naresh Kumar, Renato Zenobi","doi":"10.1021/acsnano.4c17728","DOIUrl":null,"url":null,"abstract":"The on-surface condensation of boronic acids is a key step in fabricating functional interfaces with tailored properties; yet, a clear understanding of the molecular structural transformations involved remains a significant challenge. Here, we directly monitor the condensation reaction in a self-assembled monolayer of 4-mercaptophenylboronic acid (MPBA) on Au(111) using tip-enhanced Raman spectroscopy (TERS). The structural evolution in the MPBA adlayer is tracked via the emergence of new peaks, blue shifts, and intensity changes in characteristic Raman bands. Hyperspectral TERS imaging provides comprehensive insight into molecular transformations, including B–O–B bond formation, increased molecular constraints, and an evolution in molecular orientation. Furthermore, density functional theory simulations confirm that the boroxine trimer is the primary product of the on-surface condensation reaction. This study provides significant insights into on-surface boronic acid condensation chemistry for the rational design of functionalized surfaces with targeted chemical properties.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"62 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17728","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The on-surface condensation of boronic acids is a key step in fabricating functional interfaces with tailored properties; yet, a clear understanding of the molecular structural transformations involved remains a significant challenge. Here, we directly monitor the condensation reaction in a self-assembled monolayer of 4-mercaptophenylboronic acid (MPBA) on Au(111) using tip-enhanced Raman spectroscopy (TERS). The structural evolution in the MPBA adlayer is tracked via the emergence of new peaks, blue shifts, and intensity changes in characteristic Raman bands. Hyperspectral TERS imaging provides comprehensive insight into molecular transformations, including B–O–B bond formation, increased molecular constraints, and an evolution in molecular orientation. Furthermore, density functional theory simulations confirm that the boroxine trimer is the primary product of the on-surface condensation reaction. This study provides significant insights into on-surface boronic acid condensation chemistry for the rational design of functionalized surfaces with targeted chemical properties.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.