{"title":"Enhanced brain tumor classification using convolutional neural networks and ensemble voting classifier for improved diagnostic accuracy","authors":"Vijaya Kumar Velpula , Jyothi Sri Vadlamudi , Malathi Janapati , Purna Prakash Kasaraneni , Yellapragada Venkata Pavan Kumar , Pradeep Reddy Challa , Rammohan Mallipeddi","doi":"10.1016/j.compeleceng.2025.110124","DOIUrl":null,"url":null,"abstract":"<div><div>Brain tumors, characterized by abnormal cell growth within the brain and surrounding tissues, present significant clinical challenges. Early and accurate detection is essential for effective diagnosis, treatment planning, and improving patient outcomes. Magnetic resonance imaging (MRI) is the preferred modality for brain tumor detection due to its ability to produce high-quality images without ionizing radiation. This study addresses the need for accurate classification by leveraging three pre-trained convolutional neural network models – DenseNet-201, ResNet-101, and SqueezeNet – which enhance feature extraction and classification accuracy. The models were evaluated with and without K-fold cross-validation to ensure robust and reliable results. Additionally, implemented an ensemble voting classifier (EVC) to combine the strengths of the individual convolutional neural network (CNN) models, leading to improved accuracy and robustness. The models were tested on two datasets: (i) a binary dataset and (ii) a multi-class dataset, demonstrating the versatility of the approach. The ensemble classifier achieved 99.69% accuracy for multi-class data and 100% for binary data, outperforming individual models. Key metrics such as accuracy, sensitivity, specificity, precision, and F1-score were used to assess performance. These results highlight the effectiveness of ensemble learning for magnetic resonance imaging brain tumor classification, providing valuable insights for future research and potential clinical applications.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110124"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625000679","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Brain tumors, characterized by abnormal cell growth within the brain and surrounding tissues, present significant clinical challenges. Early and accurate detection is essential for effective diagnosis, treatment planning, and improving patient outcomes. Magnetic resonance imaging (MRI) is the preferred modality for brain tumor detection due to its ability to produce high-quality images without ionizing radiation. This study addresses the need for accurate classification by leveraging three pre-trained convolutional neural network models – DenseNet-201, ResNet-101, and SqueezeNet – which enhance feature extraction and classification accuracy. The models were evaluated with and without K-fold cross-validation to ensure robust and reliable results. Additionally, implemented an ensemble voting classifier (EVC) to combine the strengths of the individual convolutional neural network (CNN) models, leading to improved accuracy and robustness. The models were tested on two datasets: (i) a binary dataset and (ii) a multi-class dataset, demonstrating the versatility of the approach. The ensemble classifier achieved 99.69% accuracy for multi-class data and 100% for binary data, outperforming individual models. Key metrics such as accuracy, sensitivity, specificity, precision, and F1-score were used to assess performance. These results highlight the effectiveness of ensemble learning for magnetic resonance imaging brain tumor classification, providing valuable insights for future research and potential clinical applications.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.