Computed gastrocnemius muscle moment arm based on wrapping objects derived from 3D ultrasound: Exploring the impact of ankle position and predictability of anthropometrics
Eric Irani , Shuo Chen , Sepehr Ramezani , Amit Patel , Jason B. Malone , Hyunjun Shin , Hwan Choi
{"title":"Computed gastrocnemius muscle moment arm based on wrapping objects derived from 3D ultrasound: Exploring the impact of ankle position and predictability of anthropometrics","authors":"Eric Irani , Shuo Chen , Sepehr Ramezani , Amit Patel , Jason B. Malone , Hyunjun Shin , Hwan Choi","doi":"10.1016/j.jbiomech.2025.112556","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of this study was to evaluate the effectiveness of subject-specific wrapping objects (SS.WOs) derived from 3D ultrasound measurements in calculating the musculotendon moment arm, particularly the lateral gastrocnemius muscle moment arm at the knee (Gas.lat KMA). Computed musculoskeletal modeling, essential for understanding human locomotion, often shows discrepancies compared to in vivo measurements. This research investigated whether SS.WOs, tailored to individual muscle paths across different joint configurations, could mitigate these discrepancies. Ten healthy participants were subjected to 3D ultrasound to record the Gas.lat path at various knee and ankle angles. This data was utilized to develop SS.WOs in a scaled Rajagopal Full-body model (SS-Rajagopal). We assessed the impact of the modeling approach and ankle position on the computed Gas.lat KMA by comparing it with results from two scaled generic models (SC-Rajagopal and SC-Gait2392). There was no significant effect of ankle position on Gas.lat KMA across all knee angles; however, the choice of modeling approach markedly influenced the outcomes. The computed Gas.lat KMA from SS-Rajagopal more closely matched in vivo measurements at higher knee angles compared to SC-Rajagopal. Significant correlations were observed between the computed Gas.lat KMA from both SS-Rajagopal and SC-Rajagopal with anthropometric measurements. However, no correlation was found between the properties of SS.WOs and individual anthropometrics. In conclusion, while optimization techniques such as muscle path computation with WOs improve musculoskeletal modeling efficiency, they may not fully address inter-subject variability.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"182 ","pages":"Article 112556"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025000673","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to evaluate the effectiveness of subject-specific wrapping objects (SS.WOs) derived from 3D ultrasound measurements in calculating the musculotendon moment arm, particularly the lateral gastrocnemius muscle moment arm at the knee (Gas.lat KMA). Computed musculoskeletal modeling, essential for understanding human locomotion, often shows discrepancies compared to in vivo measurements. This research investigated whether SS.WOs, tailored to individual muscle paths across different joint configurations, could mitigate these discrepancies. Ten healthy participants were subjected to 3D ultrasound to record the Gas.lat path at various knee and ankle angles. This data was utilized to develop SS.WOs in a scaled Rajagopal Full-body model (SS-Rajagopal). We assessed the impact of the modeling approach and ankle position on the computed Gas.lat KMA by comparing it with results from two scaled generic models (SC-Rajagopal and SC-Gait2392). There was no significant effect of ankle position on Gas.lat KMA across all knee angles; however, the choice of modeling approach markedly influenced the outcomes. The computed Gas.lat KMA from SS-Rajagopal more closely matched in vivo measurements at higher knee angles compared to SC-Rajagopal. Significant correlations were observed between the computed Gas.lat KMA from both SS-Rajagopal and SC-Rajagopal with anthropometric measurements. However, no correlation was found between the properties of SS.WOs and individual anthropometrics. In conclusion, while optimization techniques such as muscle path computation with WOs improve musculoskeletal modeling efficiency, they may not fully address inter-subject variability.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.