Combined treatment targeting Ca2+ store mediated Ca2+ release and store-operated calcium entry reduces secondary axonal degeneration and improves functional outcome after SCI

IF 4.6 2区 医学 Q1 NEUROSCIENCES Experimental Neurology Pub Date : 2025-02-03 DOI:10.1016/j.expneurol.2025.115178
Emma Jones , Spencer O. Ames , Jesse Brooks , Johnny Morehouse , Norah Hill , Katsuhiko Mikoshiba , Akinobu Suzuki , David P. Stirling
{"title":"Combined treatment targeting Ca2+ store mediated Ca2+ release and store-operated calcium entry reduces secondary axonal degeneration and improves functional outcome after SCI","authors":"Emma Jones ,&nbsp;Spencer O. Ames ,&nbsp;Jesse Brooks ,&nbsp;Johnny Morehouse ,&nbsp;Norah Hill ,&nbsp;Katsuhiko Mikoshiba ,&nbsp;Akinobu Suzuki ,&nbsp;David P. Stirling","doi":"10.1016/j.expneurol.2025.115178","DOIUrl":null,"url":null,"abstract":"<div><div>Store-operated calcium entry (SOCE) is crucial for cellular processes, including cellular calcium homeostasis and signaling. However, uncontrolled activation of SOCE is implicated in neurological disorders and CNS trauma, but underlying mechanisms remain unclear. We hypothesized that inhibiting SOCE enhances neurological recovery following contusive spinal cord injury (SCI). To investigate key SOCE effectors, stromal interaction molecules (STIM) and Orai channels on neurological recovery following spinal cord injury (SCI), we utilized male and female conditional neuronal <em>Stim1</em>KO mice to investigate the role of neuronal STIM1 in SCI outcome following a mild (30 kdyn) contusion at T13. To investigate Ca2+ store mediated Ca2+ store depletion, and SOCE-mediated refilling in SCI outcome, we inhibited the IP<sub>3</sub>R with 2-APB, and uncoupled STIM/Orai activation with DPB162-AE, respectively. Intravital microscopy demonstrated that neuron specific <em>Stim1</em>KO increased axonal survival post-SCI. Likewise, pharmaceutical uncoupling of STIM1/Orai activation, alone or combined with IP<sub>3</sub>R inhibition, enhanced axon survival 24 h after T13 contusion in male and female <em>Thy1</em>YFP+ mice. Behavioral evaluation of female C57BL/6 J mice revealed that DPB162-AE, alone or combined with 2-APB, improved neurological recovery 4–6 weeks following a moderate (50 kdyn) T9 contusion. Immunohistochemical analysis showed that combined treatment improves axonal sparing, increases astrogliosis, and reduces microglia/macrophage density at the injury epicenter 6 weeks post-SCI. These findings reveal a novel role for neuronal STIM1 in “bystander” secondary axonal degeneration, and introduce STIM/Orai functional uncoupler DPB162-AE, combined with IP<sub>3</sub>R inhibitor 2-APB, as a novel therapeutic approach for improving neurological recovery following SCI.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"386 ","pages":"Article 115178"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625000421","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Store-operated calcium entry (SOCE) is crucial for cellular processes, including cellular calcium homeostasis and signaling. However, uncontrolled activation of SOCE is implicated in neurological disorders and CNS trauma, but underlying mechanisms remain unclear. We hypothesized that inhibiting SOCE enhances neurological recovery following contusive spinal cord injury (SCI). To investigate key SOCE effectors, stromal interaction molecules (STIM) and Orai channels on neurological recovery following spinal cord injury (SCI), we utilized male and female conditional neuronal Stim1KO mice to investigate the role of neuronal STIM1 in SCI outcome following a mild (30 kdyn) contusion at T13. To investigate Ca2+ store mediated Ca2+ store depletion, and SOCE-mediated refilling in SCI outcome, we inhibited the IP3R with 2-APB, and uncoupled STIM/Orai activation with DPB162-AE, respectively. Intravital microscopy demonstrated that neuron specific Stim1KO increased axonal survival post-SCI. Likewise, pharmaceutical uncoupling of STIM1/Orai activation, alone or combined with IP3R inhibition, enhanced axon survival 24 h after T13 contusion in male and female Thy1YFP+ mice. Behavioral evaluation of female C57BL/6 J mice revealed that DPB162-AE, alone or combined with 2-APB, improved neurological recovery 4–6 weeks following a moderate (50 kdyn) T9 contusion. Immunohistochemical analysis showed that combined treatment improves axonal sparing, increases astrogliosis, and reduces microglia/macrophage density at the injury epicenter 6 weeks post-SCI. These findings reveal a novel role for neuronal STIM1 in “bystander” secondary axonal degeneration, and introduce STIM/Orai functional uncoupler DPB162-AE, combined with IP3R inhibitor 2-APB, as a novel therapeutic approach for improving neurological recovery following SCI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Neurology
Experimental Neurology 医学-神经科学
CiteScore
10.10
自引率
3.80%
发文量
258
审稿时长
42 days
期刊介绍: Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.
期刊最新文献
Advances in brain ischemia mechanisms and treatment approaches: Recent insights and inflammation-driven risks. Mineral coated microparticles delivering Interleukin-4, Interleukin-10, and Interleukin-13 reduce inflammation and improve function after spinal cord injury in a rat Prolyl hydroxylase inhibitor desidustat improves stroke outcomes via enhancing efferocytosis in mice with chronic kidney disease. Proportional recovery in mice with cortical stroke. Combined treatment targeting Ca2+ store mediated Ca2+ release and store-operated calcium entry reduces secondary axonal degeneration and improves functional outcome after SCI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1