Improving Container Port Efficiency: A Data-Driven Model for Optimizing Truck Arrival Appointments Through Distributionally Robust Optimization

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL Journal of Advanced Transportation Pub Date : 2025-02-05 DOI:10.1155/atr/8137761
Shichao Sun, Yao Dong
{"title":"Improving Container Port Efficiency: A Data-Driven Model for Optimizing Truck Arrival Appointments Through Distributionally Robust Optimization","authors":"Shichao Sun,&nbsp;Yao Dong","doi":"10.1155/atr/8137761","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The irregular arrival patterns of container trucks at ports have a substantial impact on logistics operations’ efficiency, resulting in congestion during peak hours and unused port capacity during idle times. Implementing a truck appointment system (TAS) is vital to address this issue effectively. This paper suggests enhancing the TAS by adopting a data-driven approach using terminal gate data to understand the intricate and uncertain relationship between truck arrival patterns and port operational efficiency. Insights gained from these data are utilized to develop a distributionally robust optimization (DRO) model. This model provides an exact solution for optimizing the appointment quota plan of TASs, thereby improving port efficiency and addressing operational challenges. Compared to existing methods, this approach does not heavily rely on theoretical assumptions concerning the cooperation mechanisms among trucks, yard equipment, quayside equipment, and other facilities and fully considers the complex uncertainties in truck arrivals. Furthermore, to examine the effectiveness of the proposed model, a case study is conducted at Yan Port, China, aiming to achieve practical results. The numerical experiments comparing its performance with the conventional robust optimization (RO) model confirm the superiority of the proposed DRO model in minimizing the total truck turnaround time within the terminal and overall time expenses. This superiority stems from its integration of the respective advantages of stochastic optimization (SO) and traditional RO methods. By optimizing the appointment quota plan in this manner, it achieves a balanced distribution of truck arrivals, showcasing its significant potential to enhance port logistics efficiency.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/8137761","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/8137761","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The irregular arrival patterns of container trucks at ports have a substantial impact on logistics operations’ efficiency, resulting in congestion during peak hours and unused port capacity during idle times. Implementing a truck appointment system (TAS) is vital to address this issue effectively. This paper suggests enhancing the TAS by adopting a data-driven approach using terminal gate data to understand the intricate and uncertain relationship between truck arrival patterns and port operational efficiency. Insights gained from these data are utilized to develop a distributionally robust optimization (DRO) model. This model provides an exact solution for optimizing the appointment quota plan of TASs, thereby improving port efficiency and addressing operational challenges. Compared to existing methods, this approach does not heavily rely on theoretical assumptions concerning the cooperation mechanisms among trucks, yard equipment, quayside equipment, and other facilities and fully considers the complex uncertainties in truck arrivals. Furthermore, to examine the effectiveness of the proposed model, a case study is conducted at Yan Port, China, aiming to achieve practical results. The numerical experiments comparing its performance with the conventional robust optimization (RO) model confirm the superiority of the proposed DRO model in minimizing the total truck turnaround time within the terminal and overall time expenses. This superiority stems from its integration of the respective advantages of stochastic optimization (SO) and traditional RO methods. By optimizing the appointment quota plan in this manner, it achieves a balanced distribution of truck arrivals, showcasing its significant potential to enhance port logistics efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
期刊最新文献
Determining the Initiation Threshold of Underground Road Network Construction in High-Intensity Development Areas: A New Methodology Considering Resilience Trajectory-Based Safety Analysis of Electric Battery Taxis Improving Container Port Efficiency: A Data-Driven Model for Optimizing Truck Arrival Appointments Through Distributionally Robust Optimization Impact of Driver Age and Behavior on the Effectiveness of ADAS in Cyclist Safety on Rural Roads: A Simulator Study Riding Through the Pandemic: Unveiling Motorcycle Crash Trends Amidst Three Years of the COVID-19 Crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1