A Novel Impedance Platform Based on Printed Polymer Electrodes for Automated Virus Neutralization Assays

Stefanie Michaelis, Anja Germann, Marcus Schäfer, Jannik Jungmann, Anne-Kathrin Mildner, Iris Riemann, Saskia Bast, Thorsten Knoll, Sylvia Wagner, Eike Kottkamp, Daniel Baasner, Boris Anczykowski, Joachim Wegener
{"title":"A Novel Impedance Platform Based on Printed Polymer Electrodes for Automated Virus Neutralization Assays","authors":"Stefanie Michaelis,&nbsp;Anja Germann,&nbsp;Marcus Schäfer,&nbsp;Jannik Jungmann,&nbsp;Anne-Kathrin Mildner,&nbsp;Iris Riemann,&nbsp;Saskia Bast,&nbsp;Thorsten Knoll,&nbsp;Sylvia Wagner,&nbsp;Eike Kottkamp,&nbsp;Daniel Baasner,&nbsp;Boris Anczykowski,&nbsp;Joachim Wegener","doi":"10.1002/appl.70004","DOIUrl":null,"url":null,"abstract":"<p>Cell-based neutralization assays are of central importance for the development of new vaccine candidates as well as quality assurance of already approved vaccines. Suppression of viral infection by neutralizing antibodies present in serum of vaccinated individuals serves as an indicator for efficacy of a vaccine. Established readouts used to date are hardly automated, provide no time resolution and require expensive reagents. These shortcomings are limiting factors in vaccine development. In contrast, when virus-compatible host cells are grown on multi-electrode arrays, the cellular infection state and the associated cell response are assessable by impedance measurements. Unlike endpoint assays, the host cell response is followed continuously in real time, label-free and noninvasively. Here, a sensor platform comprising hardware, software and disposable electrode arrays is described suitable for fully automated cell-based neutralization assays tailored for high throughput screening campaigns. To develop cost-effective, disposable electrode arrays for impedance measurements, we screen printed film electrodes made from conducting polymers on the bottom of multi-well plates. The polymer electrodes were characterized for their host cell compatibility and readout performance in comparison to established gold-film electrodes. Hard- and software were tailored for robust and routine use in virological assays. Virus titration, virus neutralization as well as antiviral drug (Efavirenz) intervention studies were conducted using vesicular stomatitis virus (VSV) pseudotypes or the Env HIV-1 infectious molecular clones Ce1176 and X1632 as viral model systems. The assays showed very similar analytical performance in terms of titration curves and dose–response relationships for polymer electrodes compared to commercial gold-film electrode arrays and reporter-based endpoint assays. Considering their technical advantages over established assays, impedance readings based on low-cost polymer electrode arrays may become an attractive alternative to conventional assays using luminescent or colorimetric readouts.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-based neutralization assays are of central importance for the development of new vaccine candidates as well as quality assurance of already approved vaccines. Suppression of viral infection by neutralizing antibodies present in serum of vaccinated individuals serves as an indicator for efficacy of a vaccine. Established readouts used to date are hardly automated, provide no time resolution and require expensive reagents. These shortcomings are limiting factors in vaccine development. In contrast, when virus-compatible host cells are grown on multi-electrode arrays, the cellular infection state and the associated cell response are assessable by impedance measurements. Unlike endpoint assays, the host cell response is followed continuously in real time, label-free and noninvasively. Here, a sensor platform comprising hardware, software and disposable electrode arrays is described suitable for fully automated cell-based neutralization assays tailored for high throughput screening campaigns. To develop cost-effective, disposable electrode arrays for impedance measurements, we screen printed film electrodes made from conducting polymers on the bottom of multi-well plates. The polymer electrodes were characterized for their host cell compatibility and readout performance in comparison to established gold-film electrodes. Hard- and software were tailored for robust and routine use in virological assays. Virus titration, virus neutralization as well as antiviral drug (Efavirenz) intervention studies were conducted using vesicular stomatitis virus (VSV) pseudotypes or the Env HIV-1 infectious molecular clones Ce1176 and X1632 as viral model systems. The assays showed very similar analytical performance in terms of titration curves and dose–response relationships for polymer electrodes compared to commercial gold-film electrode arrays and reporter-based endpoint assays. Considering their technical advantages over established assays, impedance readings based on low-cost polymer electrode arrays may become an attractive alternative to conventional assays using luminescent or colorimetric readouts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A Novel Impedance Platform Based on Printed Polymer Electrodes for Automated Virus Neutralization Assays Influence of Bi2O3 Concentration on Optical and Gamma Ray Shielding Properties of BaTiO3 Ceramics Open-Source Tools for Assessing Cytoskeleton Properties in Pathological Conditions From Microscopy Images: An Application Note Application of Finite Pointset Method to Study Two-Way Coupled Transient Bio-Thermoelastic Effects in Skin Tissue Toward the Automation of the 3D Robotic Coreless Filament Winding Process for High-Performance Composite Materials With Multiple Reinforcement Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1