{"title":"ASUGNN: an asymmetric-unit-based graph neural network for crystal property prediction","authors":"Barnie Cao, Daniel Anderson, Luke Davis","doi":"10.1107/S1600576724011336","DOIUrl":null,"url":null,"abstract":"<p>Material properties can often be derived directly from fundamental equations governing electron behavior. In this study, we present an open-source asymmetric-unit-based graph neural network designed to capture atomic patterns and their corresponding electron distributions. By coarse-graining sites belonging to conjugate subgroups and analyzing reciprocal space through powder X-ray diffraction patterns, our model predicts key physical properties, including formation energy, band gap, bulk modulus and metal/non-metal classification. Our method demonstrates exceptional predictive accuracy for properties calculated using density functional theory across the Materials Project dataset. Our approach is compared with state-of-the-art models and exhibits impressively low error rates in zero-shot predictions.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"58 1","pages":"87-95"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724011336","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Material properties can often be derived directly from fundamental equations governing electron behavior. In this study, we present an open-source asymmetric-unit-based graph neural network designed to capture atomic patterns and their corresponding electron distributions. By coarse-graining sites belonging to conjugate subgroups and analyzing reciprocal space through powder X-ray diffraction patterns, our model predicts key physical properties, including formation energy, band gap, bulk modulus and metal/non-metal classification. Our method demonstrates exceptional predictive accuracy for properties calculated using density functional theory across the Materials Project dataset. Our approach is compared with state-of-the-art models and exhibits impressively low error rates in zero-shot predictions.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.