Experimental study on the load-carrying capacity of steel-mesh-reinforced rubber bearings under axial compression

Han Li, Shengze Tian, M. Shahria Alam
{"title":"Experimental study on the load-carrying capacity of steel-mesh-reinforced rubber bearings under axial compression","authors":"Han Li,&nbsp;Shengze Tian,&nbsp;M. Shahria Alam","doi":"10.1002/eer2.104","DOIUrl":null,"url":null,"abstract":"<p>Isolation bearings play an important role in the seismic resilience of highway bridges. Flexible and high-strength reinforcement has been applied in elastomeric isolation bearings to substitute conventional rigid steel plate reinforcement to enhance their lateral performance, for example, lower lateral stiffness and larger deformability. However, the main literature shows that existing flexible reinforcement, such as carbon/glass fiber fabric, may not guarantee a sufficient vertical load-carrying capacity of elastomeric bearings to meet the design requirement of 30 MPa considering the vertical seismic effect. To this end, the emerging high-strength steel woven wire mesh was introduced as an alternative flexible reinforcement for the bearings in this study to increase their ultimate compression capacity while maintaining superior lateral performance. Vertical compression tests were conducted on 34 specimens of the proposed unbonded steel-mesh-reinforced bearings (USRBs) to investigate the ultimate compression capacity. In addition to the general ultimate behavior of USRBs under vertical loading, the influence of various design parameters (i.e., individual rubber layer thickness, number of reinforcement layers, bearing design load) was investigated through comparisons among the specimens. From the test results, the compressive failure mechanism of USRBs was unveiled, which originated from the tensile failure of the steel mesh reinforcement. The steel mesh reinforcement was proved to increase the bearing ultimate compression capacity to an average of 52.0 MPa compared to fiber-reinforced bearings, with 85% of specimens exceeding 30 MPa. Moreover, the compression capacity of USRBs was identified to be significantly affected by the individual rubber layer thickness. Specific discussions were further provided concerning the influence of potential manufacturing defects. Finally, suggestions were provided to further enhance the ultimate compression capacity of USRBs based on the results and discussions.</p>","PeriodicalId":100383,"journal":{"name":"Earthquake Engineering and Resilience","volume":"3 4","pages":"697-713"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eer2.104","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eer2.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Isolation bearings play an important role in the seismic resilience of highway bridges. Flexible and high-strength reinforcement has been applied in elastomeric isolation bearings to substitute conventional rigid steel plate reinforcement to enhance their lateral performance, for example, lower lateral stiffness and larger deformability. However, the main literature shows that existing flexible reinforcement, such as carbon/glass fiber fabric, may not guarantee a sufficient vertical load-carrying capacity of elastomeric bearings to meet the design requirement of 30 MPa considering the vertical seismic effect. To this end, the emerging high-strength steel woven wire mesh was introduced as an alternative flexible reinforcement for the bearings in this study to increase their ultimate compression capacity while maintaining superior lateral performance. Vertical compression tests were conducted on 34 specimens of the proposed unbonded steel-mesh-reinforced bearings (USRBs) to investigate the ultimate compression capacity. In addition to the general ultimate behavior of USRBs under vertical loading, the influence of various design parameters (i.e., individual rubber layer thickness, number of reinforcement layers, bearing design load) was investigated through comparisons among the specimens. From the test results, the compressive failure mechanism of USRBs was unveiled, which originated from the tensile failure of the steel mesh reinforcement. The steel mesh reinforcement was proved to increase the bearing ultimate compression capacity to an average of 52.0 MPa compared to fiber-reinforced bearings, with 85% of specimens exceeding 30 MPa. Moreover, the compression capacity of USRBs was identified to be significantly affected by the individual rubber layer thickness. Specific discussions were further provided concerning the influence of potential manufacturing defects. Finally, suggestions were provided to further enhance the ultimate compression capacity of USRBs based on the results and discussions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Mainshock–aftershock seismic fragility assessment of civil structures: A state-of-the-art review Comparative study on the seismic performance of column-supported silos: Single, row, and group configurations under different storage conditions Experimental study on the load-carrying capacity of steel-mesh-reinforced rubber bearings under axial compression Numerical model and effect of site condition on the coupled dynamic characteristics of water storage tank of AP1000 shield building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1