Influence of asymmetric microchannels in the structure and function of engineered neuronal circuits.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2025-02-28 DOI:10.1088/1758-5090/adb2e5
J C Mateus, P Melo, M Aroso, B Charlot, P Aguiar
{"title":"Influence of asymmetric microchannels in the structure and function of engineered neuronal circuits.","authors":"J C Mateus, P Melo, M Aroso, B Charlot, P Aguiar","doi":"10.1088/1758-5090/adb2e5","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the intricate structure-function relationships of neuronal circuits is crucial for unraveling how the brain achieves efficient information transfer. In specific brain regions, like the hippocampus, neurons are organized in layers and form unidirectional connectivity, which is thought to help ensure controlled signal flow and information processing. In recent years, researchers have tried emulating these structural principles by providing cultured neurons with asymmetric environmental cues, namely microfluidics' microchannels, which promote directed axonal growth. Even though a few reports have claimed to achieve unidirectional connectivity of<i>in vitro</i>neuronal circuits, given the lack of functional characterization, it remains unknown if this structural connectivity correlates with functional connectivity. We have replicated and tested the performance of asymmetric microchannel designs previously reported in the literature to be successful in promoting directed axonal growth, as well as other custom variations. A new variation of 'Arrowhead', termed 'Rams', was the best-performing motif with a ∼76% probability per microchannel of allowing strictly unidirectional connections at 14 d<i>in vitro</i>. Importantly, we assessed the functional implications of these different asymmetric microchannel designs. For this purpose, we combined custom microfluidics with microelectrode array technology to record the electrophysiological activity of two segregated populations of hippocampal neurons ('Source' and 'Target'). This functional characterization revealed that up to ∼94% of the spiking activity recorded along microchannels with the 'Rams' motif propagates towards the 'Target' population. Moreover, our results indicate that these engineered circuits also tended to exhibit network-level synchronizations with defined directionality. Overall, this functional characterization of the structure-function relationships promoted by asymmetric microchannels has the potential to provide insights into how neuronal circuits use specific network architectures for effective computations. Moreover, the here-developed devices and approaches may be used in a wide range of applications, such as disease modeling or preclinical drug screening.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adb2e5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the intricate structure-function relationships of neuronal circuits is crucial for unraveling how the brain achieves efficient information transfer. In specific brain regions, like the hippocampus, neurons are organized in layers and form unidirectional connectivity, which is thought to help ensure controlled signal flow and information processing. In recent years, researchers have tried emulating these structural principles by providing cultured neurons with asymmetric environmental cues, namely microfluidics' microchannels, which promote directed axonal growth. Even though a few reports have claimed to achieve unidirectional connectivity ofin vitroneuronal circuits, given the lack of functional characterization, it remains unknown if this structural connectivity correlates with functional connectivity. We have replicated and tested the performance of asymmetric microchannel designs previously reported in the literature to be successful in promoting directed axonal growth, as well as other custom variations. A new variation of 'Arrowhead', termed 'Rams', was the best-performing motif with a ∼76% probability per microchannel of allowing strictly unidirectional connections at 14 din vitro. Importantly, we assessed the functional implications of these different asymmetric microchannel designs. For this purpose, we combined custom microfluidics with microelectrode array technology to record the electrophysiological activity of two segregated populations of hippocampal neurons ('Source' and 'Target'). This functional characterization revealed that up to ∼94% of the spiking activity recorded along microchannels with the 'Rams' motif propagates towards the 'Target' population. Moreover, our results indicate that these engineered circuits also tended to exhibit network-level synchronizations with defined directionality. Overall, this functional characterization of the structure-function relationships promoted by asymmetric microchannels has the potential to provide insights into how neuronal circuits use specific network architectures for effective computations. Moreover, the here-developed devices and approaches may be used in a wide range of applications, such as disease modeling or preclinical drug screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
Influence of asymmetric microchannels in the structure and function of engineered neuronal circuits. Biotechnological advances in 3D modeling of cancer initiation. Examples from pancreatic cancer research and beyond. Enhanced gelatin methacryloyl nanohydroxyapatite hydrogel for high-fidelity 3D printing of bone tissue engineering scaffolds. Application progress of bio-manufacturing technology in kidney organoids. Advancing regenerative medicine: the Aceman system's pioneering automation and machine learning in mesenchymal stem cell biofabrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1