Toufik Naolou, Nadine Schadzek, Iliyana Pepelanova, Miriam Frommer, Jan Mathis Hornbostel, Franziska Lötz, Leopold Sauheitl, Stefan Dultz, Vincent J M N L Felde, Ola Myklebost, Cornelia Lee-Thedieck
{"title":"Enhanced gelatin methacryloyl nanohydroxyapatite hydrogel for high-fidelity 3D printing of bone tissue engineering scaffolds.","authors":"Toufik Naolou, Nadine Schadzek, Iliyana Pepelanova, Miriam Frommer, Jan Mathis Hornbostel, Franziska Lötz, Leopold Sauheitl, Stefan Dultz, Vincent J M N L Felde, Ola Myklebost, Cornelia Lee-Thedieck","doi":"10.1088/1758-5090/adbb90","DOIUrl":null,"url":null,"abstract":"<p><p>Patients suffering from large bone defects are in urgent need of suitable bone replacements. Besides biocompatibility, such replacements need to mimic the 3D architecture of bone and match chemical, mechanical and biological properties, ideally promoting ossification. As natural bone mainly contains collagen type I and carbonate hydroxyapatite, a 3D-printable biomaterial consisting of methacrylated gelatin (GelMA) and nanohydroxyapatite (nHAp) would be beneficial to mimic the composition and shape of natural bone. So far, such nanocomposite hydrogels (NCH) suffered from unsatisfactory rheological properties making them unsuitable for extrusion-based 3D printing with high structural fidelity. In this study, we introduce a novel GelMA/nHAp NCH composition, incorporating the rheological modifier carbomer to improve rheological properties and addressing the challenge of calcium cations released from nHAp that hinder GelMA gelation. Leveraging its shear-thinning and self-healing properties, the NCH ink retains its shape and forms cohesive structures after deposition, which can be permanently stabilized by subsequent UV crosslinking. Consequently, the NCH enables the printing of 3D structures with high shape fidelity in all dimensions, including the z-direction, allowing the fabrication of highly macroporous constructs. Both the uncured and the UV crosslinked NCH behave like a viscoelastic solid, with G´>G´´ at deformations up to 100-200 %. After UV crosslinking, the NCH can, depending on the GelMA concentration, reach storage moduli of approximately 10 to over 100 kPa and a mean Young's Modulus of about 70 kPa. The printed scaffolds permit not only cell survival but also osteogenic differentiation, highlighting their potential for bone tissue engineering.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adbb90","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Patients suffering from large bone defects are in urgent need of suitable bone replacements. Besides biocompatibility, such replacements need to mimic the 3D architecture of bone and match chemical, mechanical and biological properties, ideally promoting ossification. As natural bone mainly contains collagen type I and carbonate hydroxyapatite, a 3D-printable biomaterial consisting of methacrylated gelatin (GelMA) and nanohydroxyapatite (nHAp) would be beneficial to mimic the composition and shape of natural bone. So far, such nanocomposite hydrogels (NCH) suffered from unsatisfactory rheological properties making them unsuitable for extrusion-based 3D printing with high structural fidelity. In this study, we introduce a novel GelMA/nHAp NCH composition, incorporating the rheological modifier carbomer to improve rheological properties and addressing the challenge of calcium cations released from nHAp that hinder GelMA gelation. Leveraging its shear-thinning and self-healing properties, the NCH ink retains its shape and forms cohesive structures after deposition, which can be permanently stabilized by subsequent UV crosslinking. Consequently, the NCH enables the printing of 3D structures with high shape fidelity in all dimensions, including the z-direction, allowing the fabrication of highly macroporous constructs. Both the uncured and the UV crosslinked NCH behave like a viscoelastic solid, with G´>G´´ at deformations up to 100-200 %. After UV crosslinking, the NCH can, depending on the GelMA concentration, reach storage moduli of approximately 10 to over 100 kPa and a mean Young's Modulus of about 70 kPa. The printed scaffolds permit not only cell survival but also osteogenic differentiation, highlighting their potential for bone tissue engineering.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).