Silicone wristbands for assessing personal chemical exposures: impacts of movement on chemical uptake rates.

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Environmental Science: Processes & Impacts Pub Date : 2025-02-06 DOI:10.1039/d4em00440j
Joshua D Miller, Nicholas J Herkert, Heather M Stapleton, Heileen Hsu-Kim
{"title":"Silicone wristbands for assessing personal chemical exposures: impacts of movement on chemical uptake rates.","authors":"Joshua D Miller, Nicholas J Herkert, Heather M Stapleton, Heileen Hsu-Kim","doi":"10.1039/d4em00440j","DOIUrl":null,"url":null,"abstract":"<p><p>Silicone wristbands are utilized as personal passive sampling devices for exposure assessments of semi-volatile organic compounds (SVOCs). While research demonstrates that accumulation of SVOCs on the wristbands correlates with internal dose for many different chemical classes, the mechanisms of accumulation remain poorly understood. Multiple factors such as movement of the individual lead to variable mass transfer conditions at the sampler interface. The objective of this study was to investigate the effect of air flow velocity across the wristband surface on SVOC uptake rates and to evaluate if enhanced rates vary between compounds with a range physicochemical properties. Experiments were conducted in a residential home where wristbands were either held in static conditions or attached to an end-over-end rotator at different speeds for a four week period. We measured the uptake of 17 different SVOCs that are commonly detected in indoor environments and compared their accumulation rates as a function of the rotating velocity. For wristbands moving at tangential speeds of 0.05, 0.5, and 1.1 m s<sup>-1</sup> (relevant for a walking pace), the motion enhanced uptake rates by 1.2 ± 0.2, 3.2 ± 0.6, and 4.3 ± 0.8 times the respective rates for the static controls. This enhancement is consistent with gas phase diffusion-controlled mass transfer theory at the wristband interface. Moreover, the enhancement of uptake positively correlated with octanol-air partition coefficients log <i>K</i><sub>OA</sub> (<i>R</i> = 0.6; <i>p</i> < 0.02) of the chemicals and negatively correlated with diffusivity (<i>R</i> = 0.5; <i>p</i> < 0.05). In a comparison with worn wristband studies, the ratio of uptakes rates for worn relative to rotating wristbands correlated with SVOC properties (<i>R</i> = 0.85 for log <i>K</i><sub>OA</sub>). For SVOCs with log <i>K</i><sub>OA</sub> > 9, uptake rates on worn wristbands greatly exceeded (by a factor of 10 to 10<sup>4</sup>) the respective rates in this rotator experiment. These results suggest that a mass transfer mechanism based solely on gas-solid partitioning under variations in air velocity cannot fully explain uptake on worn wristbands. Instead, the results implicate additional processes such as particle phase deposition, direct contact with certain materials, and excretion from skin as pathways of accumulation on the wristband sampler and personal exposure.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d4em00440j","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Silicone wristbands are utilized as personal passive sampling devices for exposure assessments of semi-volatile organic compounds (SVOCs). While research demonstrates that accumulation of SVOCs on the wristbands correlates with internal dose for many different chemical classes, the mechanisms of accumulation remain poorly understood. Multiple factors such as movement of the individual lead to variable mass transfer conditions at the sampler interface. The objective of this study was to investigate the effect of air flow velocity across the wristband surface on SVOC uptake rates and to evaluate if enhanced rates vary between compounds with a range physicochemical properties. Experiments were conducted in a residential home where wristbands were either held in static conditions or attached to an end-over-end rotator at different speeds for a four week period. We measured the uptake of 17 different SVOCs that are commonly detected in indoor environments and compared their accumulation rates as a function of the rotating velocity. For wristbands moving at tangential speeds of 0.05, 0.5, and 1.1 m s-1 (relevant for a walking pace), the motion enhanced uptake rates by 1.2 ± 0.2, 3.2 ± 0.6, and 4.3 ± 0.8 times the respective rates for the static controls. This enhancement is consistent with gas phase diffusion-controlled mass transfer theory at the wristband interface. Moreover, the enhancement of uptake positively correlated with octanol-air partition coefficients log KOA (R = 0.6; p < 0.02) of the chemicals and negatively correlated with diffusivity (R = 0.5; p < 0.05). In a comparison with worn wristband studies, the ratio of uptakes rates for worn relative to rotating wristbands correlated with SVOC properties (R = 0.85 for log KOA). For SVOCs with log KOA > 9, uptake rates on worn wristbands greatly exceeded (by a factor of 10 to 104) the respective rates in this rotator experiment. These results suggest that a mass transfer mechanism based solely on gas-solid partitioning under variations in air velocity cannot fully explain uptake on worn wristbands. Instead, the results implicate additional processes such as particle phase deposition, direct contact with certain materials, and excretion from skin as pathways of accumulation on the wristband sampler and personal exposure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
期刊最新文献
Silicone wristbands for assessing personal chemical exposures: impacts of movement on chemical uptake rates. Uptake of per- and polyfluorinated alkyl substances by dry farmed oats following the agricultural application of biosolids and compost. An in-depth analysis of the impact of environmental drivers on the variability of phytoplankton community in the Arabian Sea during 2010-2021. Evaluating low NOx hydrogen engines designed for off-road and construction applications. Photodegradation of typical psychotropic drugs in the aquatic environment: a critical review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1