Fire influence on land-water interactions in aridland catchments.

IF 7.6 1区 生物学 Q1 BIOLOGY BioScience Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI:10.1093/biosci/biae120
Tamara K Harms, Heili Lowman, Joanna Blaszczak, Ashley Cale, Xiaoli Dong, Stevan Earl, Leah Gaines-Sewell, Julia Grabow, Erin Hanan, Marina Lauck, John Melack, Ann Marie Reinhold, Betsy M Summers, Alex J Webster, Nancy B Grimm
{"title":"Fire influence on land-water interactions in aridland catchments.","authors":"Tamara K Harms, Heili Lowman, Joanna Blaszczak, Ashley Cale, Xiaoli Dong, Stevan Earl, Leah Gaines-Sewell, Julia Grabow, Erin Hanan, Marina Lauck, John Melack, Ann Marie Reinhold, Betsy M Summers, Alex J Webster, Nancy B Grimm","doi":"10.1093/biosci/biae120","DOIUrl":null,"url":null,"abstract":"<p><p>Wildfires have increased in size, frequency, and intensity in arid regions of the western United States because of human activity, changing land use, and rising temperature. Fire can degrade water quality, reshape aquatic habitat, and increase the risk of high discharge and erosion. Drawing from patterns in montane dry forest, chaparral, and desert ecosystems, we developed a conceptual framework describing how interactions and feedbacks among material accumulation, combustion of fuels, and hydrologic transport influence the effects of fire on streams. Accumulation and flammability of fuels shift in opposition along gradients of aridity, influencing the materials available for transport. Hydrologic transport of combustion products and materials accumulated after fire can propagate the effects of fire to unburned stream-riparian corridors, and episodic precipitation characteristic of arid lands can cause lags, spatial heterogeneity, and feedbacks in response. Resolving uncertainty in fire effects on arid catchments will require monitoring across hydroclimatic gradients and episodic precipitation.</p>","PeriodicalId":9003,"journal":{"name":"BioScience","volume":"75 1","pages":"30-46"},"PeriodicalIF":7.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biosci/biae120","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wildfires have increased in size, frequency, and intensity in arid regions of the western United States because of human activity, changing land use, and rising temperature. Fire can degrade water quality, reshape aquatic habitat, and increase the risk of high discharge and erosion. Drawing from patterns in montane dry forest, chaparral, and desert ecosystems, we developed a conceptual framework describing how interactions and feedbacks among material accumulation, combustion of fuels, and hydrologic transport influence the effects of fire on streams. Accumulation and flammability of fuels shift in opposition along gradients of aridity, influencing the materials available for transport. Hydrologic transport of combustion products and materials accumulated after fire can propagate the effects of fire to unburned stream-riparian corridors, and episodic precipitation characteristic of arid lands can cause lags, spatial heterogeneity, and feedbacks in response. Resolving uncertainty in fire effects on arid catchments will require monitoring across hydroclimatic gradients and episodic precipitation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BioScience
BioScience 生物-生物学
CiteScore
14.10
自引率
2.00%
发文量
109
审稿时长
3 months
期刊介绍: BioScience is a monthly journal that has been in publication since 1964. It provides readers with authoritative and current overviews of biological research. The journal is peer-reviewed and heavily cited, making it a reliable source for researchers, educators, and students. In addition to research articles, BioScience also covers topics such as biology education, public policy, history, and the fundamental principles of the biological sciences. This makes the content accessible to a wide range of readers. The journal includes professionally written feature articles that explore the latest advancements in biology. It also features discussions on professional issues, book reviews, news about the American Institute of Biological Sciences (AIBS), and columns on policy (Washington Watch) and education (Eye on Education).
期刊最新文献
Fire influence on land-water interactions in aridland catchments. Wild harvests could aid food insecurity and reduce wildlife hyperabundance. How can biodiversity strategy and action plans incorporate genetic diversity and align with global commitments? Advancing terrestrial ecology by improving cross-temporal research and collaboration. A conceptual classification scheme of invasion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1