The diagnostic value of the combined application of blood lipid metabolism markers and interleukin-6 in osteoporosis and osteopenia.

IF 3.9 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Lipids in Health and Disease Pub Date : 2025-02-05 DOI:10.1186/s12944-025-02456-2
Liping Fan, Jiahao Chen, Chong Chen, Yongwei Zhang, Yeqing Yang, Zhe Chen
{"title":"The diagnostic value of the combined application of blood lipid metabolism markers and interleukin-6 in osteoporosis and osteopenia.","authors":"Liping Fan, Jiahao Chen, Chong Chen, Yongwei Zhang, Yeqing Yang, Zhe Chen","doi":"10.1186/s12944-025-02456-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to analyse the relationship of the blood lipid profile and interleukin-6 (IL-6) with osteoporosis and osteopenia and to explore the predictive value of the combined application of these biomarkers in osteoporosis and osteopenia.</p><p><strong>Methods: </strong>Data from 276 patients treated in the orthopaedics department were retrospectively analysed. Their general information was collected, and the relationships among the blood lipid profile, IL-6 with bone turnover markers, and bone mineral density (BMD) were analysed. Patients were categorized based on their T scores for intergroup comparisons. Finally, the diagnostic efficiency of lipid metabolism markers and IL-6 for osteoporosis and osteopenia was assessed using receiver operating characteristic (ROC) curves.</p><p><strong>Results: </strong>(1) In both males and females, a negative relationship was observed between BMD and several biomarkers, including total cholesterol (TC), apolipoprotein B (ApoB), low-density lipoprotein cholesterol (LDL-C), free fatty acids (FFAs), and IL-6. Additionally, apolipoprotein A1 (ApoA1) was negatively correlated with BMD only in females, and the ApoA1/ApoB ratio was positively correlated with BMD only in males. (2) FFAs and IL-6 were positively correlated with β-CrossLaps peptide in males. However, for females, TC, ApoB, LDL-C, and IL-6 were negatively correlated with 25-hydroxyvitamin D. FFAs, IL-6, and age were negatively correlated with osteocalcin in males and females. (3) According to the T scores for the lumbar spine, the TC, ApoA1, ApoB, HDL-C, LDL-C, FFA, and IL-6 levels in the osteoporosis group and the TC, ApoB, LDL-C, and FFA levels in the osteopenia group were significantly greater than those in the normal bone mass group. Additionally, the osteoporosis group presented substantially higher levels of ApoA1, FFAs, and IL-6 than the osteopenia group. (4) IL-6 was positively correlated with FFAs, while a negative correlation was observed with TC, ApoA1, ApoB, HDL-C, and LDL-C. (5) The ROC curve revealed that the areas under the curve (AUCs) of TC, FFAs, IL-6, ApoA1, and the ApoA1/ApoB ratio for predicting osteoporosis or osteopenia were 0.634, 0.713, 0.670, 0.628, and 0.516, respectively, whereas the AUC of the combination of TC, FFAs, IL-6, and ApoA1 was 0.846, and the AUC of the combination of TC, FFAs, IL-6, and the ApoA1/ApoB ratio was 0.842. In the sex stratification analysis, in males, the AUCs of TC, FFAs, IL-6, and the ApoA1/ApoB ratio for the prediction of osteoporosis or osteopenia were 0.596, 0.688, 0.739, and 0.539, respectively. In contrast, the AUC of the combination of TC, FFAs, IL-6, and the ApoA1/ApoB ratio was 0.838. In females, the AUCs of TC, FFAs, IL-6, ApoA1, and the ApoA1/ApoB ratio for predicting osteoporosis or osteopenia were 0.620, 0.728, 0.653, 0.611, and 0.502, respectively, whereas the AUC of the combination of TC, FFAs, IL-6, and ApoA1 was 0.841, and the AUC of the combination of TC, FFAs, IL-6, and the ApoA1/ApoB ratio was 0.828.</p><p><strong>Conclusion: </strong>The levels of TC, FFAs, IL-6, ApoA1, and ApoB could contribute to changes in bone metabolism, moreover, FFAs could induce an increase in IL-6 further aggravating bone mass loss and leading to osteoporosis. Based on the comparison of the AUC results, the combination of TC, FFAs, and IL-6 with ApoA1 or the ApoA1/ApoB ratio can better predict osteoporosis or osteopenia in patients, and the diagnostic efficiency is significantly better than that of any individual indicator. The regulation of blood lipid levels should become a new target for clinicians to treat osteoporosis and osteopenia.</p>","PeriodicalId":18073,"journal":{"name":"Lipids in Health and Disease","volume":"24 1","pages":"38"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids in Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12944-025-02456-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aimed to analyse the relationship of the blood lipid profile and interleukin-6 (IL-6) with osteoporosis and osteopenia and to explore the predictive value of the combined application of these biomarkers in osteoporosis and osteopenia.

Methods: Data from 276 patients treated in the orthopaedics department were retrospectively analysed. Their general information was collected, and the relationships among the blood lipid profile, IL-6 with bone turnover markers, and bone mineral density (BMD) were analysed. Patients were categorized based on their T scores for intergroup comparisons. Finally, the diagnostic efficiency of lipid metabolism markers and IL-6 for osteoporosis and osteopenia was assessed using receiver operating characteristic (ROC) curves.

Results: (1) In both males and females, a negative relationship was observed between BMD and several biomarkers, including total cholesterol (TC), apolipoprotein B (ApoB), low-density lipoprotein cholesterol (LDL-C), free fatty acids (FFAs), and IL-6. Additionally, apolipoprotein A1 (ApoA1) was negatively correlated with BMD only in females, and the ApoA1/ApoB ratio was positively correlated with BMD only in males. (2) FFAs and IL-6 were positively correlated with β-CrossLaps peptide in males. However, for females, TC, ApoB, LDL-C, and IL-6 were negatively correlated with 25-hydroxyvitamin D. FFAs, IL-6, and age were negatively correlated with osteocalcin in males and females. (3) According to the T scores for the lumbar spine, the TC, ApoA1, ApoB, HDL-C, LDL-C, FFA, and IL-6 levels in the osteoporosis group and the TC, ApoB, LDL-C, and FFA levels in the osteopenia group were significantly greater than those in the normal bone mass group. Additionally, the osteoporosis group presented substantially higher levels of ApoA1, FFAs, and IL-6 than the osteopenia group. (4) IL-6 was positively correlated with FFAs, while a negative correlation was observed with TC, ApoA1, ApoB, HDL-C, and LDL-C. (5) The ROC curve revealed that the areas under the curve (AUCs) of TC, FFAs, IL-6, ApoA1, and the ApoA1/ApoB ratio for predicting osteoporosis or osteopenia were 0.634, 0.713, 0.670, 0.628, and 0.516, respectively, whereas the AUC of the combination of TC, FFAs, IL-6, and ApoA1 was 0.846, and the AUC of the combination of TC, FFAs, IL-6, and the ApoA1/ApoB ratio was 0.842. In the sex stratification analysis, in males, the AUCs of TC, FFAs, IL-6, and the ApoA1/ApoB ratio for the prediction of osteoporosis or osteopenia were 0.596, 0.688, 0.739, and 0.539, respectively. In contrast, the AUC of the combination of TC, FFAs, IL-6, and the ApoA1/ApoB ratio was 0.838. In females, the AUCs of TC, FFAs, IL-6, ApoA1, and the ApoA1/ApoB ratio for predicting osteoporosis or osteopenia were 0.620, 0.728, 0.653, 0.611, and 0.502, respectively, whereas the AUC of the combination of TC, FFAs, IL-6, and ApoA1 was 0.841, and the AUC of the combination of TC, FFAs, IL-6, and the ApoA1/ApoB ratio was 0.828.

Conclusion: The levels of TC, FFAs, IL-6, ApoA1, and ApoB could contribute to changes in bone metabolism, moreover, FFAs could induce an increase in IL-6 further aggravating bone mass loss and leading to osteoporosis. Based on the comparison of the AUC results, the combination of TC, FFAs, and IL-6 with ApoA1 or the ApoA1/ApoB ratio can better predict osteoporosis or osteopenia in patients, and the diagnostic efficiency is significantly better than that of any individual indicator. The regulation of blood lipid levels should become a new target for clinicians to treat osteoporosis and osteopenia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Lipids in Health and Disease
Lipids in Health and Disease 生物-生化与分子生物学
CiteScore
7.70
自引率
2.20%
发文量
122
审稿时长
3-8 weeks
期刊介绍: Lipids in Health and Disease is an open access, peer-reviewed, journal that publishes articles on all aspects of lipids: their biochemistry, pharmacology, toxicology, role in health and disease, and the synthesis of new lipid compounds. Lipids in Health and Disease is aimed at all scientists, health professionals and physicians interested in the area of lipids. Lipids are defined here in their broadest sense, to include: cholesterol, essential fatty acids, saturated fatty acids, phospholipids, inositol lipids, second messenger lipids, enzymes and synthetic machinery that is involved in the metabolism of various lipids in the cells and tissues, and also various aspects of lipid transport, etc. In addition, the journal also publishes research that investigates and defines the role of lipids in various physiological processes, pathology and disease. In particular, the journal aims to bridge the gap between the bench and the clinic by publishing articles that are particularly relevant to human diseases and the role of lipids in the management of various diseases.
期刊最新文献
Genetic evidence for the liver-brain axis: lipid metabolism and neurodegenerative disease risk. Relationship of monocyte to high-density lipoprotein ratio (MHR) and other inflammatory biomarkers with sarcopenia: a population-based study. Free fatty acids may regulate the expression of 11β-hydroxysteroid dehydrogenase type 1 in the liver of high-fat diet golden hamsters through the ERS-CHOP-C/EBPα signaling pathway. Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer. The diagnostic value of the combined application of blood lipid metabolism markers and interleukin-6 in osteoporosis and osteopenia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1