{"title":"A mutation in RNA polymerase imparts resistance to β-lactams by preventing dysregulation of amino acid and nucleotide metabolism.","authors":"Yesha Patel, John D Helmann","doi":"10.1016/j.celrep.2025.115268","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to diverse antibiotics can result from mutations in RNA polymerase (RNAP), but the underlying mechanisms remain poorly understood. In this study, we compare two Bacillus subtilis RNAP mutations: one in β' (rpoC G1122D) that increases resistance to cefuroxime (CEF; a model β-lactam) and one in β (rpoB H482Y) that increases sensitivity. CEF resistance is mediated by a decrease in branched-chain amino acid (BCAA), methionine, and pyrimidine pathways. These same pathways are upregulated by CEF, and their derepression increases CEF sensitivity and antibiotic-induced production of reactive oxygen species. The CEF-resistant rpoC G1122D mutant evades these metabolic perturbations, and repression of the BCAA and pyrimidine pathways may function to restrict membrane biogenesis, which is beneficial when cell wall synthesis is impaired. These findings provide a vivid example of how RNAP mutations, which commonly arise in response to diverse selection conditions, can rewire cellular metabolism to enhance fitness.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115268"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115268","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resistance to diverse antibiotics can result from mutations in RNA polymerase (RNAP), but the underlying mechanisms remain poorly understood. In this study, we compare two Bacillus subtilis RNAP mutations: one in β' (rpoC G1122D) that increases resistance to cefuroxime (CEF; a model β-lactam) and one in β (rpoB H482Y) that increases sensitivity. CEF resistance is mediated by a decrease in branched-chain amino acid (BCAA), methionine, and pyrimidine pathways. These same pathways are upregulated by CEF, and their derepression increases CEF sensitivity and antibiotic-induced production of reactive oxygen species. The CEF-resistant rpoC G1122D mutant evades these metabolic perturbations, and repression of the BCAA and pyrimidine pathways may function to restrict membrane biogenesis, which is beneficial when cell wall synthesis is impaired. These findings provide a vivid example of how RNAP mutations, which commonly arise in response to diverse selection conditions, can rewire cellular metabolism to enhance fitness.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.