Advancing periodontal diagnosis: Harnessing advanced artificial intelligence for patterns of periodontal bone loss in cone beam computed tomography.

IF 2.9 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Dento maxillo facial radiology Pub Date : 2025-02-05 DOI:10.1093/dmfr/twaf011
Sevda Kurt-Bayrakdar, İbrahim Şevki Bayrakdar, Alican Kuran, Özer Çelik, Kaan Orhan, Rohan Jagtap
{"title":"Advancing periodontal diagnosis: Harnessing advanced artificial intelligence for patterns of periodontal bone loss in cone beam computed tomography.","authors":"Sevda Kurt-Bayrakdar, İbrahim Şevki Bayrakdar, Alican Kuran, Özer Çelik, Kaan Orhan, Rohan Jagtap","doi":"10.1093/dmfr/twaf011","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The current study aimed to automatically detect tooth presence, tooth numbering, and types of periodontal bone defects from CBCT images using a segmentation method with an advanced artificial intelligence (AI) algorithm.</p><p><strong>Methods: </strong>This study utilized a dataset of CBCT volumes collected from 502 individual subjects. Initially, 250 CBCT volumes were used for automatic tooth segmentation and numbering. Subsequently, CBCT volumes from 251 patients diagnosed with periodontal disease were employed to train an AI system to identify various periodontal bone defects using a segmentation method in web-based labeling software. In the third stage, CBCT images from 251 periodontally healthy subjects were combined with images from 251 periodontally diseased subjects to develop an AI model capable of automatically classifying patients as either periodontally healthy or periodontally diseased. Statistical evaluation included ROC curve analysis and confusion matrix model.</p><p><strong>Results: </strong>The AUC values for the models developed to segment teeth, total alveolar bone loss, supra-bony defects, infra-bony defects, perio-endo lesions, buccal defects, and furcation defects were 0.9594, 0.8499, 0.5052, 0.5613 (with cropping, AUC: 0.7488), 0.8893, 0.6780 (with cropping, AUC: 0.7592), and 0.6332 (with cropping, AUC: 0.8087), respectively. Additionally, the classification CNN model achieved an accuracy of 80% for healthy individuals and 76% for unhealthy individuals.</p><p><strong>Conclusions: </strong>This study employed AI models on CBCT images to automatically detect tooth presence, numbering, and various periodontal bone defects, achieving high accuracy and demonstrating potential for enhancing dental diagnostics and patient care.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twaf011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The current study aimed to automatically detect tooth presence, tooth numbering, and types of periodontal bone defects from CBCT images using a segmentation method with an advanced artificial intelligence (AI) algorithm.

Methods: This study utilized a dataset of CBCT volumes collected from 502 individual subjects. Initially, 250 CBCT volumes were used for automatic tooth segmentation and numbering. Subsequently, CBCT volumes from 251 patients diagnosed with periodontal disease were employed to train an AI system to identify various periodontal bone defects using a segmentation method in web-based labeling software. In the third stage, CBCT images from 251 periodontally healthy subjects were combined with images from 251 periodontally diseased subjects to develop an AI model capable of automatically classifying patients as either periodontally healthy or periodontally diseased. Statistical evaluation included ROC curve analysis and confusion matrix model.

Results: The AUC values for the models developed to segment teeth, total alveolar bone loss, supra-bony defects, infra-bony defects, perio-endo lesions, buccal defects, and furcation defects were 0.9594, 0.8499, 0.5052, 0.5613 (with cropping, AUC: 0.7488), 0.8893, 0.6780 (with cropping, AUC: 0.7592), and 0.6332 (with cropping, AUC: 0.8087), respectively. Additionally, the classification CNN model achieved an accuracy of 80% for healthy individuals and 76% for unhealthy individuals.

Conclusions: This study employed AI models on CBCT images to automatically detect tooth presence, numbering, and various periodontal bone defects, achieving high accuracy and demonstrating potential for enhancing dental diagnostics and patient care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
9.10%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging. Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology. The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal. Quick Facts: - 2015 Impact Factor - 1.919 - Receipt to first decision - average of 3 weeks - Acceptance to online publication - average of 3 weeks - Open access option - ISSN: 0250-832X - eISSN: 1476-542X
期刊最新文献
Bone quality assessment around dental implants in cone-beam computed tomography images: effect of scan mode and metal artefact reduction tool. Deep learning-based segmentation of the mandibular canals in cone beam computed tomography reaches human level performance. Skull joints assessed via CT for age estimation-a systematic review. Development and assessment of a prototype of an interproximal image receptor-holding device for use in pediatric dentistry. Advancing periodontal diagnosis: Harnessing advanced artificial intelligence for patterns of periodontal bone loss in cone beam computed tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1