Puerarin Ameliorates the Ferroptosis in Diabetic Liver Injure Through the JAK2/STAT3 Pathway Inhibition Based on Network Pharmacology and Experimental Validation.
{"title":"Puerarin Ameliorates the Ferroptosis in Diabetic Liver Injure Through the JAK2/STAT3 Pathway Inhibition Based on Network Pharmacology and Experimental Validation.","authors":"Xiaoxu Fan, Shuangqiao Liu, Jing Yu, Jian Hua, Yingtong Feng, Zhen Wang, Yiwei Shen, Wei Lan, Jingxia Wang","doi":"10.2147/DDDT.S487496","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic liver injury (DLI) is a common complication of diabetes mellitus (DM), which seriously endangers the health of diabetic patients. Puerarin, the main active component of <i>Pueraria lobata</i>, has shown positive effects in lowering blood glucose and lipids, resisting oxidative stress, and protecting the liver. However, the mechanism of protective effect of Puerarin on DLI remains unclear.</p><p><strong>Methods: </strong>Various databases were used to screen for targets of Puerarin, ferroptosis and DLI. Protein-protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to predict key targets and pathways. Molecular docking was used to predict the interactions between Puerarin and core targets. KK/Upj-Ay/J (KKAy) mice and high glucose (HG)-induced AML12 cells were used to study the protective effect of Puerarin on DLI. The molecular mechanisms by which Puerarin acts were further verified by in vivo and in vitro experiments.</p><p><strong>Results: </strong>KEGG analysis indicated that the JAK/STAT pathway might be related to the anti-DLI effect of Puerarin. Molecular docking revealed that Puerarin has good affinity for JAK2 and STAT3. In vivo, Puerarin (80 mg/kg) reduced body weight, blood glucose, blood lipids and liver function in KKAy mice fed a high-sugar, high-fat diet. Puerarin also ameliorated hepatic pathological changes and inflammatory responses, and attenuated oxidative stress and iron overload in KKAy mice. Western blotting results showed that Puerarin could regulate the expression of proteins related to JAK2/STAT3 pathway and ferroptosis pathway. In vitro, Puerarin (25, 50, 100 μM) increased cell viability and decreased steatosis and liver function indexes in AML12 cells induced by HG (30 mm) to varying degrees. More importantly, AG490 blocker experiments showed that the regulation of ferroptosis process by Puerarin was dependent on the JAK2/STAT3 pathway.</p><p><strong>Conclusion: </strong>In conclusion, this study revealed Puerarin may regulate the ferroptosis process by inhibiting the JAK2/STAT3 pathway for the treatment of DLI.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"737-757"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S487496","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic liver injury (DLI) is a common complication of diabetes mellitus (DM), which seriously endangers the health of diabetic patients. Puerarin, the main active component of Pueraria lobata, has shown positive effects in lowering blood glucose and lipids, resisting oxidative stress, and protecting the liver. However, the mechanism of protective effect of Puerarin on DLI remains unclear.
Methods: Various databases were used to screen for targets of Puerarin, ferroptosis and DLI. Protein-protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to predict key targets and pathways. Molecular docking was used to predict the interactions between Puerarin and core targets. KK/Upj-Ay/J (KKAy) mice and high glucose (HG)-induced AML12 cells were used to study the protective effect of Puerarin on DLI. The molecular mechanisms by which Puerarin acts were further verified by in vivo and in vitro experiments.
Results: KEGG analysis indicated that the JAK/STAT pathway might be related to the anti-DLI effect of Puerarin. Molecular docking revealed that Puerarin has good affinity for JAK2 and STAT3. In vivo, Puerarin (80 mg/kg) reduced body weight, blood glucose, blood lipids and liver function in KKAy mice fed a high-sugar, high-fat diet. Puerarin also ameliorated hepatic pathological changes and inflammatory responses, and attenuated oxidative stress and iron overload in KKAy mice. Western blotting results showed that Puerarin could regulate the expression of proteins related to JAK2/STAT3 pathway and ferroptosis pathway. In vitro, Puerarin (25, 50, 100 μM) increased cell viability and decreased steatosis and liver function indexes in AML12 cells induced by HG (30 mm) to varying degrees. More importantly, AG490 blocker experiments showed that the regulation of ferroptosis process by Puerarin was dependent on the JAK2/STAT3 pathway.
Conclusion: In conclusion, this study revealed Puerarin may regulate the ferroptosis process by inhibiting the JAK2/STAT3 pathway for the treatment of DLI.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.