Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides.

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL Drug Design, Development and Therapy Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.2147/DDDT.S507402
Hui-Yan Ding, Han Zhou, Yi Jiang, Si-Si Chen, Xiao-Xia Wu, Yang Li, Jun Luo, Peng-Fei Zhang, Yi-Nan Ding
{"title":"Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides.","authors":"Hui-Yan Ding, Han Zhou, Yi Jiang, Si-Si Chen, Xiao-Xia Wu, Yang Li, Jun Luo, Peng-Fei Zhang, Yi-Nan Ding","doi":"10.2147/DDDT.S507402","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains a leading cause of mortality worldwide, accounting for approximately 10 million deaths annually. Standard treatments, including surgery, radiotherapy, and chemotherapy, often result in damage to healthy cells and severe toxic side effects. In recent years, antisense technology therapeutics, which interfere with RNA translation through complementary base pairing, have emerged as promising approaches for cancer treatment. Despite the availability of various antisense oligonucleotide (ASO) drugs on the market, challenges such as poor active targeting and susceptibility to clearance by circulating enzymes remain. Compared with other delivery systems, lipid nanovesicle (LNV) delivery systems offer a potential solution that uniquely enhances ASO targeting and stability. Studies have shown that LNVs can increase the accumulation of ASOs in tumor sites several-fold, significantly reducing systemic toxic reactions and demonstrating increased therapeutic efficiency in preclinical models. Additionally, LNVs can protect ASOs from enzymatic degradation within the body, extending their half-life and thus enhancing their therapeutic effects. This paper provides a comprehensive review of recent examples and applications of LNV delivery of ASOs in cancer treatment, highlighting their unique functions and outcomes. Furthermore, this paper discusses the key challenges and potential impacts of this innovative approach to cancer therapy.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"1001-1023"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S507402","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer remains a leading cause of mortality worldwide, accounting for approximately 10 million deaths annually. Standard treatments, including surgery, radiotherapy, and chemotherapy, often result in damage to healthy cells and severe toxic side effects. In recent years, antisense technology therapeutics, which interfere with RNA translation through complementary base pairing, have emerged as promising approaches for cancer treatment. Despite the availability of various antisense oligonucleotide (ASO) drugs on the market, challenges such as poor active targeting and susceptibility to clearance by circulating enzymes remain. Compared with other delivery systems, lipid nanovesicle (LNV) delivery systems offer a potential solution that uniquely enhances ASO targeting and stability. Studies have shown that LNVs can increase the accumulation of ASOs in tumor sites several-fold, significantly reducing systemic toxic reactions and demonstrating increased therapeutic efficiency in preclinical models. Additionally, LNVs can protect ASOs from enzymatic degradation within the body, extending their half-life and thus enhancing their therapeutic effects. This paper provides a comprehensive review of recent examples and applications of LNV delivery of ASOs in cancer treatment, highlighting their unique functions and outcomes. Furthermore, this paper discusses the key challenges and potential impacts of this innovative approach to cancer therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
期刊最新文献
Irisin Mitigates Doxorubicin-Induced Cardiotoxicity by Reducing Oxidative Stress and Inflammation via Modulation of the PERK-eIF2α-ATF4 Pathway. Dynamic Visualization of Computer-Aided Peptide Design for Cancer Therapeutics. Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Identification of Key Genes in Esketamine's Therapeutic Effects on Perioperative Neurocognitive Disorders via Transcriptome Sequencing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1