Advancing Optical Coherence Tomography Diagnostic Capabilities: Machine Learning Approaches to Detect Autoimmune Inflammatory Diseases.

IF 2 4区 医学 Q3 CLINICAL NEUROLOGY Journal of Neuro-Ophthalmology Pub Date : 2025-02-06 DOI:10.1097/WNO.0000000000002322
Rachel C Kenney, Thomas A Flagiello, Anitha D' Cunha, Suhan Alva, Scott N Grossman, Frederike C Oertel, Friedemann Paul, Kurt G Schilling, Laura J Balcer, Steven L Galetta, Lekha Pandit
{"title":"Advancing Optical Coherence Tomography Diagnostic Capabilities: Machine Learning Approaches to Detect Autoimmune Inflammatory Diseases.","authors":"Rachel C Kenney, Thomas A Flagiello, Anitha D' Cunha, Suhan Alva, Scott N Grossman, Frederike C Oertel, Friedemann Paul, Kurt G Schilling, Laura J Balcer, Steven L Galetta, Lekha Pandit","doi":"10.1097/WNO.0000000000002322","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In many parts of the world including India, the prevalence of autoimmune inflammatory diseases such as neuromyelitis optica spectrum disorders (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), and multiple sclerosis (MS) is rising. A diagnosis is often delayed due to insufficient diagnostic tools. Machine learning (ML) models have accurately differentiated eyes of patients with MS from those of healthy controls (HCs) using optical coherence tomography (OCT)-based retinal images. Examining OCT characteristics may allow for early differentiation of these conditions. The objective of this study was to determine feasibility of ML analyses to distinguish between patients with different autoimmune inflammatory diseases, other ocular diseases, and HCs based on OCT measurements of the peripapillary retinal nerve fiber layer (pRNFL), ganglion cell-inner plexiform layer (GCIPL), and inner nuclear layers (INLs).</p><p><strong>Methods: </strong>Eyes of people with MS (n = 99 patients), NMOSD (n = 40), MOGAD (n = 74), other ocular diseases (OTHER, n = 16), and HCs (n = 54) from the Mangalore Demyelinating Disease Registry were included. Support vector machine (SVM) classification models incorporating age, pRNFL, GCIPL, and INL were performed. Data were split into training (70%) and testing (30%) data and accounted for within-patient correlations. Cross-validation was used in training to choose the best parameters for the SVM model. Accuracy and area under receiver operating characteristic curves (AUROCs) were used to assess model performance.</p><p><strong>Results: </strong>The SVM models distinguished between eyes of patients with each condition (i.e., MOGAD vs NMOSD, NMOSD vs HC, MS vs OTHER, etc) with strong discriminatory power demonstrated from the AUROCs for these comparisons ranging from 0.81 to 1.00. These models also performed with moderate to high accuracy, ranging from 0.66 to 0.81, with the exception of the MS vs NMOSD comparison, which had an accuracy of 0.53.</p><p><strong>Conclusions: </strong>ML models are useful for distinguishing between autoimmune inflammatory diseases and for distinguishing these from HCs and other ocular diseases based on OCT measures. This study lays the groundwork for future deep learning studies that use analyses of raw OCT images for identifying eyes of patients with such disorders and other etiologies of optic neuropathy.</p>","PeriodicalId":16485,"journal":{"name":"Journal of Neuro-Ophthalmology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuro-Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNO.0000000000002322","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In many parts of the world including India, the prevalence of autoimmune inflammatory diseases such as neuromyelitis optica spectrum disorders (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), and multiple sclerosis (MS) is rising. A diagnosis is often delayed due to insufficient diagnostic tools. Machine learning (ML) models have accurately differentiated eyes of patients with MS from those of healthy controls (HCs) using optical coherence tomography (OCT)-based retinal images. Examining OCT characteristics may allow for early differentiation of these conditions. The objective of this study was to determine feasibility of ML analyses to distinguish between patients with different autoimmune inflammatory diseases, other ocular diseases, and HCs based on OCT measurements of the peripapillary retinal nerve fiber layer (pRNFL), ganglion cell-inner plexiform layer (GCIPL), and inner nuclear layers (INLs).

Methods: Eyes of people with MS (n = 99 patients), NMOSD (n = 40), MOGAD (n = 74), other ocular diseases (OTHER, n = 16), and HCs (n = 54) from the Mangalore Demyelinating Disease Registry were included. Support vector machine (SVM) classification models incorporating age, pRNFL, GCIPL, and INL were performed. Data were split into training (70%) and testing (30%) data and accounted for within-patient correlations. Cross-validation was used in training to choose the best parameters for the SVM model. Accuracy and area under receiver operating characteristic curves (AUROCs) were used to assess model performance.

Results: The SVM models distinguished between eyes of patients with each condition (i.e., MOGAD vs NMOSD, NMOSD vs HC, MS vs OTHER, etc) with strong discriminatory power demonstrated from the AUROCs for these comparisons ranging from 0.81 to 1.00. These models also performed with moderate to high accuracy, ranging from 0.66 to 0.81, with the exception of the MS vs NMOSD comparison, which had an accuracy of 0.53.

Conclusions: ML models are useful for distinguishing between autoimmune inflammatory diseases and for distinguishing these from HCs and other ocular diseases based on OCT measures. This study lays the groundwork for future deep learning studies that use analyses of raw OCT images for identifying eyes of patients with such disorders and other etiologies of optic neuropathy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuro-Ophthalmology
Journal of Neuro-Ophthalmology 医学-临床神经学
CiteScore
2.80
自引率
13.80%
发文量
593
审稿时长
6-12 weeks
期刊介绍: The Journal of Neuro-Ophthalmology (JNO) is the official journal of the North American Neuro-Ophthalmology Society (NANOS). It is a quarterly, peer-reviewed journal that publishes original and commissioned articles related to neuro-ophthalmology.
期刊最新文献
Advancing Optical Coherence Tomography Diagnostic Capabilities: Machine Learning Approaches to Detect Autoimmune Inflammatory Diseases. Recurrent Idiopathic Intracranial Hypertension-Related Papilledema After Abrupt Discontinuation of Semaglutide. Prevalence and Clinical Associations of Peripapillary Hyperreflective Ovoid Mass-like Structures in Craniosynostosis. Literature Commentary. Isla Williams, MD, MBBS, DO, FRACP, FRCPE (1934-2024).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1