{"title":"Removal of HCl from a gas phase by MgO under atmospheric conditions.","authors":"Michiko Kitagawa, Hiromi Matsuhashi, Masanori Kidera, Kazuya Takahashi, Takahiro Kondo","doi":"10.1080/14686996.2025.2454215","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring the safety of researchers by protecting them from exposure to toxic gases in laboratories is of paramount importance. This study investigated the effectiveness of using high-surface-area MgO to remove HCl under atmospheric conditions. Two types of MgO were synthesized through the thermal decomposition 1-1-1, Tennodai, Tsukuba, of Mg(OH)<sub>2</sub> and MgC<sub>2</sub>O<sub>4</sub>·2 H<sub>2</sub>O. HCl diluted with air passed through both MgO samples, and the amounts of HCl removed and morphological changes in the samples were compared. No significant differences in surface area or crystallinity were observed with the decomposition temperatures. X-ray diffraction analysis showed that the sample prepared from MgC<sub>2</sub>O<sub>4</sub>·2 H<sub>2</sub>O reacted with HCl immediately upon introducing HCl gas. In contrast, the sample obtained from Mg(OH)<sub>2</sub> exhibited only MgO peaks, even 30 min after the introduction of HCl gas. Microscopic analysis revealed that the samples derived from Mg(OH)<sub>2</sub> showed no significant changes in shape after the reaction, whereas the MgO prepared from MgC<sub>2</sub>O<sub>4</sub>·2 H<sub>2</sub>O exhibited substantial changes in overall shape. No correlation was observed between the surface area and the amount of HCl removed. When MgO is prepared from MgC<sub>2</sub>O<sub>4</sub>·2 H<sub>2</sub>O, the reaction occurs in the bulk material, whereas when MgO is prepared from Mg(OH)<sub>2</sub>, the reaction hardly progresses after HCl adsorbs onto the MgO surface. The order of magnitude of HCl removal was consistent with the base catalytic activity of the decomposition of diacetone alcohol to acetone. These results suggest that, compared with MgO obtained from Mg(OH)<sub>2</sub>, MgO derived from MgC<sub>2</sub>O<sub>4</sub>·2 H<sub>2</sub>O generates more active sites, resulting in the reaction with HCl from surface to progress into bulk.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2454215"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2454215","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring the safety of researchers by protecting them from exposure to toxic gases in laboratories is of paramount importance. This study investigated the effectiveness of using high-surface-area MgO to remove HCl under atmospheric conditions. Two types of MgO were synthesized through the thermal decomposition 1-1-1, Tennodai, Tsukuba, of Mg(OH)2 and MgC2O4·2 H2O. HCl diluted with air passed through both MgO samples, and the amounts of HCl removed and morphological changes in the samples were compared. No significant differences in surface area or crystallinity were observed with the decomposition temperatures. X-ray diffraction analysis showed that the sample prepared from MgC2O4·2 H2O reacted with HCl immediately upon introducing HCl gas. In contrast, the sample obtained from Mg(OH)2 exhibited only MgO peaks, even 30 min after the introduction of HCl gas. Microscopic analysis revealed that the samples derived from Mg(OH)2 showed no significant changes in shape after the reaction, whereas the MgO prepared from MgC2O4·2 H2O exhibited substantial changes in overall shape. No correlation was observed between the surface area and the amount of HCl removed. When MgO is prepared from MgC2O4·2 H2O, the reaction occurs in the bulk material, whereas when MgO is prepared from Mg(OH)2, the reaction hardly progresses after HCl adsorbs onto the MgO surface. The order of magnitude of HCl removal was consistent with the base catalytic activity of the decomposition of diacetone alcohol to acetone. These results suggest that, compared with MgO obtained from Mg(OH)2, MgO derived from MgC2O4·2 H2O generates more active sites, resulting in the reaction with HCl from surface to progress into bulk.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.