Causal Mediation Analysis: A Summary-Data Mendelian Randomization Approach.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Medicine Pub Date : 2025-02-28 DOI:10.1002/sim.10317
Shu-Chin Lin, Sheng-Hsuan Lin, Tian Ge, Chia-Yen Chen, Yen-Feng Lin
{"title":"Causal Mediation Analysis: A Summary-Data Mendelian Randomization Approach.","authors":"Shu-Chin Lin, Sheng-Hsuan Lin, Tian Ge, Chia-Yen Chen, Yen-Feng Lin","doi":"10.1002/sim.10317","DOIUrl":null,"url":null,"abstract":"<p><p>Summary-data Mendelian randomization (MR), a widely used approach in causal inference, has recently attracted attention for improving causal mediation analysis. Two existing methods corresponding to the difference method and product method of linear mediation analysis have been developed to perform MR-based mediation analysis using the inverse-variance weighted method (MR-IVW). Despite these developments, there is still a need for more rigorous, efficient, and precise MR-based mediation methodologies. In this study, we develop summary-data MR-based frameworks for causal mediation analysis. We improve the accuracy, statistical efficiency and robustness of the existing MR-based mediation analysis by implementing novel variance estimators for the mediation effects, deriving rigorous procedures for statistical inference, and accounting for widespread pleiotropic effects. Specifically, we propose Diff-IVW and Prod-IVW to improve upon the existing methods and provide the pleiotropy-robust methods (Diff-Egger, Diff-Median, Prod-Egger, and Prod-Median), adapted from MR-Egger and MR-Median, to enhance the robustness of the MR-based mediation analysis. We conduct comprehensive simulation studies to compare the existing and proposed methods. The results show that the proposed methods, Diff-IVW and Prod-IVW, improve statistical efficiency and type I error control over the existing approaches. Although all IVW-based methods suffer from directional pleiotropy biases, the median-based methods (Diff-Median and Prod-Median) can mitigate such biases. The differences among the methods can lead to discrepant statistical conclusions as demonstrated in real data applications. Based on our simulation results, we recommend the three proposed methods in practice: Diff-IVW, Prod-IVW, and Prod-Median, which are complementary under various scenarios.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 5","pages":"e10317"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary-data Mendelian randomization (MR), a widely used approach in causal inference, has recently attracted attention for improving causal mediation analysis. Two existing methods corresponding to the difference method and product method of linear mediation analysis have been developed to perform MR-based mediation analysis using the inverse-variance weighted method (MR-IVW). Despite these developments, there is still a need for more rigorous, efficient, and precise MR-based mediation methodologies. In this study, we develop summary-data MR-based frameworks for causal mediation analysis. We improve the accuracy, statistical efficiency and robustness of the existing MR-based mediation analysis by implementing novel variance estimators for the mediation effects, deriving rigorous procedures for statistical inference, and accounting for widespread pleiotropic effects. Specifically, we propose Diff-IVW and Prod-IVW to improve upon the existing methods and provide the pleiotropy-robust methods (Diff-Egger, Diff-Median, Prod-Egger, and Prod-Median), adapted from MR-Egger and MR-Median, to enhance the robustness of the MR-based mediation analysis. We conduct comprehensive simulation studies to compare the existing and proposed methods. The results show that the proposed methods, Diff-IVW and Prod-IVW, improve statistical efficiency and type I error control over the existing approaches. Although all IVW-based methods suffer from directional pleiotropy biases, the median-based methods (Diff-Median and Prod-Median) can mitigate such biases. The differences among the methods can lead to discrepant statistical conclusions as demonstrated in real data applications. Based on our simulation results, we recommend the three proposed methods in practice: Diff-IVW, Prod-IVW, and Prod-Median, which are complementary under various scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
期刊最新文献
Regression-A Means, Not an End. Causal Mediation Analysis: A Summary-Data Mendelian Randomization Approach. Optimal Control of Directional False Discovery Rates in Large-Scale Testing. scRecover: Discriminating True and False Zeros in Single-Cell RNA-Seq Data for Imputation. Time-Dependent ROC Curve for Multiple Longitudinal Biomarkers and Its Application in Diagnosing Cardiovascular Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1