scRecover: Discriminating True and False Zeros in Single-Cell RNA-Seq Data for Imputation.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Medicine Pub Date : 2025-02-28 DOI:10.1002/sim.10334
Zhun Miao, Xinyi Lin, Jiaqi Li, Joshua Ho, Qiuchen Meng, Xuegong Zhang
{"title":"scRecover: Discriminating True and False Zeros in Single-Cell RNA-Seq Data for Imputation.","authors":"Zhun Miao, Xinyi Lin, Jiaqi Li, Joshua Ho, Qiuchen Meng, Xuegong Zhang","doi":"10.1002/sim.10334","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput single-cell RNA-seq (scRNA-seq) data contains an excess of zero values, which can be contributed by unexpressed genes and detection signal dropouts. Existing imputation methods fail to distinguish between these two types of zeros. In this study, we introduce a statistical framework that effectively differentiates true zeros (lack of expression) from false zeros (dropouts). By focusing only on imputing the dropout zeros, we developed a new imputation tool, scRecover. Our approach utilizes a zero-inflated negative binomial framework to model the gene expression of each gene in each cell, enabling the estimation of zero-dropout probability. Additionally, we employ a modified version of the Good and Toulmin model to identify true zeros for each gene. To achieve imputation, scRecover is combined with other imputation methods such as scImpute, SAVER and MAGIC. Down-sampling experiments show that it recovers dropout zeros with higher accuracy and avoids over-imputing true zero values. Experiments conducted on real world data highlight the ability of scRecover to enhance downstream analysis and visualization.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 5","pages":"e10334"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10334","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput single-cell RNA-seq (scRNA-seq) data contains an excess of zero values, which can be contributed by unexpressed genes and detection signal dropouts. Existing imputation methods fail to distinguish between these two types of zeros. In this study, we introduce a statistical framework that effectively differentiates true zeros (lack of expression) from false zeros (dropouts). By focusing only on imputing the dropout zeros, we developed a new imputation tool, scRecover. Our approach utilizes a zero-inflated negative binomial framework to model the gene expression of each gene in each cell, enabling the estimation of zero-dropout probability. Additionally, we employ a modified version of the Good and Toulmin model to identify true zeros for each gene. To achieve imputation, scRecover is combined with other imputation methods such as scImpute, SAVER and MAGIC. Down-sampling experiments show that it recovers dropout zeros with higher accuracy and avoids over-imputing true zero values. Experiments conducted on real world data highlight the ability of scRecover to enhance downstream analysis and visualization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
期刊最新文献
Regression-A Means, Not an End. Causal Mediation Analysis: A Summary-Data Mendelian Randomization Approach. Optimal Control of Directional False Discovery Rates in Large-Scale Testing. scRecover: Discriminating True and False Zeros in Single-Cell RNA-Seq Data for Imputation. Time-Dependent ROC Curve for Multiple Longitudinal Biomarkers and Its Application in Diagnosing Cardiovascular Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1