Recombinant GDF11 Promotes Recovery in a Rat Permanent Ischemia Model of Subacute Stroke.

IF 7.8 1区 医学 Q1 CLINICAL NEUROLOGY Stroke Pub Date : 2025-02-05 DOI:10.1161/STROKEAHA.124.049908
Ori S Cohen, Manisha Sinha, Yongting Wang, Tyler Daman, Pi-Chun Li, Catherine Deatherage, Berenice Charrez, Anish Deshpande, Samuel Jordan, Nyasha J Makoni, Katie LeDonne, Christopher J Dale, Laura Ben Driss, Cheryl Pan, Caterina Gasperini, Amy J Wagers, Lee L Rubin, Seth P Finklestein, Mark Allen, Richard T Lee, Anthony Sandrasagra
{"title":"Recombinant GDF11 Promotes Recovery in a Rat Permanent Ischemia Model of Subacute Stroke.","authors":"Ori S Cohen, Manisha Sinha, Yongting Wang, Tyler Daman, Pi-Chun Li, Catherine Deatherage, Berenice Charrez, Anish Deshpande, Samuel Jordan, Nyasha J Makoni, Katie LeDonne, Christopher J Dale, Laura Ben Driss, Cheryl Pan, Caterina Gasperini, Amy J Wagers, Lee L Rubin, Seth P Finklestein, Mark Allen, Richard T Lee, Anthony Sandrasagra","doi":"10.1161/STROKEAHA.124.049908","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Stroke remains a leading cause of death and disability, underscoring the urgent need for treatments that enhance recovery. Growth Differentiation Factor 11 (GDF11), a member of the TGF-β superfamily, is a circulating protein involved in cellular development and tissue repair. GDF11 has gained attention for its potential regenerative properties in aging and disease contexts, making it a candidate for stroke recovery therapies. <b>Methods:</b> The therapeutic benefits of recombinant GDF11 (rGDF11) were evaluated using a rat ischemic stroke model, in which focal cerebral infarcts were induced in 8 -10 week-old young adult male Sprague-Dawley rats by permanently occluding the proximal right middle cerebral artery. Rats received single or multiple doses of rGDF11 (0.1-4 mg/kg) or vehicle 24-72 hours post-injury. Sensorimotor functions were evaluated, and brain and serum samples were examined to determine mechanism of action and identify biomarkers, using immunofluorescence, target-specific ELISAs, and an aptamer-based proteomics platform. <b>Results:</b> We confirmed rGDF11 activity in vitro and in established in vivo mouse models of cardiac hypertrophy and glucose metabolism and assessed the efficacy of rGDF11 treatment in six preclinical stroke studies, using independent Contract Research Organizations with all study animals and treatment groups blinded. All six studies revealed consistent improvement of sensorimotor outcomes with rGDF11. rGDF11-treated rats showed increased cortical vascularization and radial glia in the ventricular zone. Serum analysis revealed rGDF11 dose-dependent decreases in C-reactive protein and identified novel pharmacodynamic biomarkers and pathways associated with potential mechanisms of action of rGDF11. <b>Conclusion:</b> These results demonstrate that systemically delivered rGDF11 enhances neovascularization, reduces inflammation, promotes neurogenesis, and improves sensorimotor function post-injury in a rat model of ischemic stroke. More importantly, these data define an optimized and clinically-feasible rGDF11 dosing regimen for therapeutic development in ischemic stroke and identify a panel of candidate pharmacodynamic and mechanistic biomarkers to support clinical translation.</p>","PeriodicalId":21989,"journal":{"name":"Stroke","volume":" ","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroke","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/STROKEAHA.124.049908","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Stroke remains a leading cause of death and disability, underscoring the urgent need for treatments that enhance recovery. Growth Differentiation Factor 11 (GDF11), a member of the TGF-β superfamily, is a circulating protein involved in cellular development and tissue repair. GDF11 has gained attention for its potential regenerative properties in aging and disease contexts, making it a candidate for stroke recovery therapies. Methods: The therapeutic benefits of recombinant GDF11 (rGDF11) were evaluated using a rat ischemic stroke model, in which focal cerebral infarcts were induced in 8 -10 week-old young adult male Sprague-Dawley rats by permanently occluding the proximal right middle cerebral artery. Rats received single or multiple doses of rGDF11 (0.1-4 mg/kg) or vehicle 24-72 hours post-injury. Sensorimotor functions were evaluated, and brain and serum samples were examined to determine mechanism of action and identify biomarkers, using immunofluorescence, target-specific ELISAs, and an aptamer-based proteomics platform. Results: We confirmed rGDF11 activity in vitro and in established in vivo mouse models of cardiac hypertrophy and glucose metabolism and assessed the efficacy of rGDF11 treatment in six preclinical stroke studies, using independent Contract Research Organizations with all study animals and treatment groups blinded. All six studies revealed consistent improvement of sensorimotor outcomes with rGDF11. rGDF11-treated rats showed increased cortical vascularization and radial glia in the ventricular zone. Serum analysis revealed rGDF11 dose-dependent decreases in C-reactive protein and identified novel pharmacodynamic biomarkers and pathways associated with potential mechanisms of action of rGDF11. Conclusion: These results demonstrate that systemically delivered rGDF11 enhances neovascularization, reduces inflammation, promotes neurogenesis, and improves sensorimotor function post-injury in a rat model of ischemic stroke. More importantly, these data define an optimized and clinically-feasible rGDF11 dosing regimen for therapeutic development in ischemic stroke and identify a panel of candidate pharmacodynamic and mechanistic biomarkers to support clinical translation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Stroke
Stroke 医学-临床神经学
CiteScore
13.40
自引率
6.00%
发文量
2021
审稿时长
3 months
期刊介绍: Stroke is a monthly publication that collates reports of clinical and basic investigation of any aspect of the cerebral circulation and its diseases. The publication covers a wide range of disciplines including anesthesiology, critical care medicine, epidemiology, internal medicine, neurology, neuro-ophthalmology, neuropathology, neuropsychology, neurosurgery, nuclear medicine, nursing, radiology, rehabilitation, speech pathology, vascular physiology, and vascular surgery. The audience of Stroke includes neurologists, basic scientists, cardiologists, vascular surgeons, internists, interventionalists, neurosurgeons, nurses, and physiatrists. Stroke is indexed in Biological Abstracts, BIOSIS, CAB Abstracts, Chemical Abstracts, CINAHL, Current Contents, Embase, MEDLINE, and Science Citation Index Expanded.
期刊最新文献
Comparison of Noncontrast Computed Tomography, Multiphase Computed Tomography Angiography, and Computed Tomography Perfusion to Assess Infarct Growth Rate in Acute Stroke. Three-Dimensional Curvature of the Cervical Carotid Artery Predicts Long-Term Neurovascular Risk in Loeys-Dietz Syndrome. Bridging the Gap: Training and Infrastructure Solutions for Mechanical Thrombectomy in Low- and Middle-Income Countries. Requiring an Interpreter Influences Stroke Care and Outcomes for People With Aphasia During Inpatient Rehabilitation. Recombinant GDF11 Promotes Recovery in a Rat Permanent Ischemia Model of Subacute Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1