Weiqiang Lai, Jinchang Huang, Xuwang Lai, Yuli Wang
{"title":"Exosome-derived Uc.339 as a potential biomarker for bone metastasis from pulmonary adenocarcinoma.","authors":"Weiqiang Lai, Jinchang Huang, Xuwang Lai, Yuli Wang","doi":"10.1016/j.tice.2025.102747","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the role of Uc.339, which is a highly expressed genomic sequence in tumor cell-derived exosomes, in mediating bone metastasis from lung adenocarcinoma. By integrating clinical samples, in vitro experiments, and in vivo murine models, we elucidated the molecular mechanisms underlying this process. Clinical blood samples from patients with lung adenocarcinoma revealed elevated Uc.339 expression in exosomes, particularly in those with bone metastasis. In vitro experiments using A549 cell-derived exosomes demonstrated an increase in osteoclast formation, implicating Uc.339 in bone microenvironment modulation. Mechanistically, Uc.339 functions as a decoy for miR-339-3p, disrupting the gene expression balance. In vivo experiments in a murine model confirmed disrupted bone microstructure in the presence of elevated Uc.339, alongside altered expression of key regulators, including SQSTM1, RANKL, nuclear factor kappa B, and miR-339-3p. Our findings underscore the systemic impact of Uc.339 in exosomes, suggesting its potential as both a biomarker and a mediator of bone metastasis. Moreover, the identified molecular alterations provide potential therapeutic targets for managing bone metastasis in patients with lung adenocarcinoma. This study contributes to a deeper understanding of the complex interplay between cancer cells and the bone microenvironment, paving the way for targeted interventions and improved clinical outcomes.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102747"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.102747","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the role of Uc.339, which is a highly expressed genomic sequence in tumor cell-derived exosomes, in mediating bone metastasis from lung adenocarcinoma. By integrating clinical samples, in vitro experiments, and in vivo murine models, we elucidated the molecular mechanisms underlying this process. Clinical blood samples from patients with lung adenocarcinoma revealed elevated Uc.339 expression in exosomes, particularly in those with bone metastasis. In vitro experiments using A549 cell-derived exosomes demonstrated an increase in osteoclast formation, implicating Uc.339 in bone microenvironment modulation. Mechanistically, Uc.339 functions as a decoy for miR-339-3p, disrupting the gene expression balance. In vivo experiments in a murine model confirmed disrupted bone microstructure in the presence of elevated Uc.339, alongside altered expression of key regulators, including SQSTM1, RANKL, nuclear factor kappa B, and miR-339-3p. Our findings underscore the systemic impact of Uc.339 in exosomes, suggesting its potential as both a biomarker and a mediator of bone metastasis. Moreover, the identified molecular alterations provide potential therapeutic targets for managing bone metastasis in patients with lung adenocarcinoma. This study contributes to a deeper understanding of the complex interplay between cancer cells and the bone microenvironment, paving the way for targeted interventions and improved clinical outcomes.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.