In vitro assessment of the synergistic effects of cefotaxime, colistin, and fosfomycin combinations against foodborne resistant Escherichia coli and Salmonella isolates.

IF 2.1 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Antibiotics Pub Date : 2025-02-05 DOI:10.1038/s41429-025-00808-9
Hazim O Khalifa, Temesgen Mohammed, Mohamed-Yousif Ibrahim Mohamed, Hamada Hashem, Ihab Habib
{"title":"In vitro assessment of the synergistic effects of cefotaxime, colistin, and fosfomycin combinations against foodborne resistant Escherichia coli and Salmonella isolates.","authors":"Hazim O Khalifa, Temesgen Mohammed, Mohamed-Yousif Ibrahim Mohamed, Hamada Hashem, Ihab Habib","doi":"10.1038/s41429-025-00808-9","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of multidrug-resistant pathogens, particularly β-lactam, colistin, and fosfomycin-resistant Escherichia coli and Salmonella, is a significant public health concern. This study evaluated the in vitro synergistic effects of antimicrobial combinations against these resistant isolates. Ten isolates that originated from retail chicken meat, including five E. coli and five Salmonella isolates, were tested against cefotaxime (CTA), fosfomycin (FOS), and colistin (COL), both individually and in combinations. Antimicrobial susceptibility was assessed using the broth microdilution method, and synergistic interactions were evaluated using checkerboard and time-killing assays. All isolates were multidrug-resistant (MDR) and were resistant to CTA, COL, and FOS. The checkerboard assay showed varying levels of synergy: two out of five E. coli isolates exhibited synergy with FOS-COL, while one E. coli isolates out of four isolates showed synergy with CTA-COL. No E. coli isolates showed synergy with FOS-CTA. For Salmonella, two out of five isolates exhibited synergy with both FOS-CTA and FOS-COL, while three out of four isolates showed synergy with CTA-COL. The time-killing assay confirmed these results, with the FOS-COL combinations showing synergy against both E. coli and Salmonella strains. Notably, the FOS-COL combination demonstrated bactericidal effects against E. coli, and all three combinations were bactericidal against Salmonella. The study highlights the potential of antimicrobial combinations, particularly FOS-COL, in combating MDR E. coli and Salmonella. These findings support the use of combination therapy as a promising strategy to in effectively treating multi-drug-resistant foodborne infections, ensuring better medical outcomes and enhanced food safety, warranting further investigation into their mechanisms and clinical applications.</p>","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41429-025-00808-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of multidrug-resistant pathogens, particularly β-lactam, colistin, and fosfomycin-resistant Escherichia coli and Salmonella, is a significant public health concern. This study evaluated the in vitro synergistic effects of antimicrobial combinations against these resistant isolates. Ten isolates that originated from retail chicken meat, including five E. coli and five Salmonella isolates, were tested against cefotaxime (CTA), fosfomycin (FOS), and colistin (COL), both individually and in combinations. Antimicrobial susceptibility was assessed using the broth microdilution method, and synergistic interactions were evaluated using checkerboard and time-killing assays. All isolates were multidrug-resistant (MDR) and were resistant to CTA, COL, and FOS. The checkerboard assay showed varying levels of synergy: two out of five E. coli isolates exhibited synergy with FOS-COL, while one E. coli isolates out of four isolates showed synergy with CTA-COL. No E. coli isolates showed synergy with FOS-CTA. For Salmonella, two out of five isolates exhibited synergy with both FOS-CTA and FOS-COL, while three out of four isolates showed synergy with CTA-COL. The time-killing assay confirmed these results, with the FOS-COL combinations showing synergy against both E. coli and Salmonella strains. Notably, the FOS-COL combination demonstrated bactericidal effects against E. coli, and all three combinations were bactericidal against Salmonella. The study highlights the potential of antimicrobial combinations, particularly FOS-COL, in combating MDR E. coli and Salmonella. These findings support the use of combination therapy as a promising strategy to in effectively treating multi-drug-resistant foodborne infections, ensuring better medical outcomes and enhanced food safety, warranting further investigation into their mechanisms and clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Antibiotics
Journal of Antibiotics 医学-免疫学
CiteScore
6.60
自引率
3.00%
发文量
87
审稿时长
1 months
期刊介绍: The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Discovery of new antibiotics and related types of biologically active substances Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.
期刊最新文献
Blue benzoquinone from scorpion venom shows bactericidal activity against drug-resistant strains of the priority pathogen Acinetobacter baumannii. Streptomyces tabacisoli sp. nov, isolated from the rhizosphere soil of Nicotiana tabacum. Evaluation of tirandamycins with selective activity against Enterococci in the silkworm infection model. KRN7000 analogues as biofilm disrupting agents against Streptococcus pyogenes and Proteus mirabilis. In vitro assessment of the synergistic effects of cefotaxime, colistin, and fosfomycin combinations against foodborne resistant Escherichia coli and Salmonella isolates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1