Forecasting mental states in schizophrenia using digital phenotyping data.

PLOS digital health Pub Date : 2025-02-07 eCollection Date: 2025-02-01 DOI:10.1371/journal.pdig.0000734
Thierry Jean, Rose Guay Hottin, Pierre Orban
{"title":"Forecasting mental states in schizophrenia using digital phenotyping data.","authors":"Thierry Jean, Rose Guay Hottin, Pierre Orban","doi":"10.1371/journal.pdig.0000734","DOIUrl":null,"url":null,"abstract":"<p><p>The promise of machine learning successfully exploiting digital phenotyping data to forecast mental states in psychiatric populations could greatly improve clinical practice. Previous research focused on binary classification and continuous regression, disregarding the often ordinal nature of prediction targets derived from clinical rating scales. In addition, mental health ratings typically show important class imbalance or skewness that need to be accounted for when evaluating predictive performance. Besides it remains unclear which machine learning algorithm is best suited for forecast tasks, the eXtreme Gradient Boosting (XGBoost) and long short-term memory (LSTM) algorithms being 2  popular choices in digital phenotyping studies. The CrossCheck dataset includes 6,364 mental state surveys using 4-point ordinal rating scales and 23,551 days of smartphone sensor data contributed by patients with schizophrenia. We trained 120 machine learning models to forecast 10 mental states (e.g., Calm, Depressed, Seeing things) from passive sensor data on 2 predictive tasks (ordinal regression, binary classification) with 2 learning algorithms (XGBoost, LSTM) over 3 forecast horizons (same day, next day, next week). A majority of ordinal regression and binary classification models performed significantly above baseline, with macro-averaged mean absolute error values between 1.19 and 0.77, and balanced accuracy between 58% and 73%, which corresponds to similar levels of performance when these metrics are scaled. Results also showed that metrics that do not account for imbalance (mean absolute error, accuracy) systematically overestimated performance, XGBoost models performed on par with or better than LSTM models, and a significant yet very small decrease in performance was observed as the forecast horizon expanded. In conclusion, when using performance metrics that properly account for class imbalance, ordinal forecast models demonstrated comparable performance to the prevalent binary classification approach without losing valuable clinical information from self-reports, thus providing richer and easier to interpret predictions.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 2","pages":"e0000734"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The promise of machine learning successfully exploiting digital phenotyping data to forecast mental states in psychiatric populations could greatly improve clinical practice. Previous research focused on binary classification and continuous regression, disregarding the often ordinal nature of prediction targets derived from clinical rating scales. In addition, mental health ratings typically show important class imbalance or skewness that need to be accounted for when evaluating predictive performance. Besides it remains unclear which machine learning algorithm is best suited for forecast tasks, the eXtreme Gradient Boosting (XGBoost) and long short-term memory (LSTM) algorithms being 2  popular choices in digital phenotyping studies. The CrossCheck dataset includes 6,364 mental state surveys using 4-point ordinal rating scales and 23,551 days of smartphone sensor data contributed by patients with schizophrenia. We trained 120 machine learning models to forecast 10 mental states (e.g., Calm, Depressed, Seeing things) from passive sensor data on 2 predictive tasks (ordinal regression, binary classification) with 2 learning algorithms (XGBoost, LSTM) over 3 forecast horizons (same day, next day, next week). A majority of ordinal regression and binary classification models performed significantly above baseline, with macro-averaged mean absolute error values between 1.19 and 0.77, and balanced accuracy between 58% and 73%, which corresponds to similar levels of performance when these metrics are scaled. Results also showed that metrics that do not account for imbalance (mean absolute error, accuracy) systematically overestimated performance, XGBoost models performed on par with or better than LSTM models, and a significant yet very small decrease in performance was observed as the forecast horizon expanded. In conclusion, when using performance metrics that properly account for class imbalance, ordinal forecast models demonstrated comparable performance to the prevalent binary classification approach without losing valuable clinical information from self-reports, thus providing richer and easier to interpret predictions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting mental states in schizophrenia using digital phenotyping data. Beyond the screen: Exploring the dynamics of social media influencers, digital food marketing, and gendered influences on adolescent diets. Children's digital privacy on fast-food and dine-in restaurant mobile applications. An AI-based approach to predict delivery outcome based on measurable factors of pregnant mothers. Community perspectives regarding brain-computer interfaces: A cross-sectional study of community-dwelling adults in the UK.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1