Sex-specific and cell-type-specific changes in chaperone-mediated autophagy across tissues during aging.

IF 17 Q1 CELL BIOLOGY Nature aging Pub Date : 2025-02-05 DOI:10.1038/s43587-024-00799-6
Rabia R Khawaja, Adrián Martín-Segura, Olaya Santiago-Fernández, Rebecca Sereda, Kristen Lindenau, Mericka McCabe, Adrián Macho-González, Maryam Jafari, Aurora Scrivo, Raquel Gomez-Sintes, Bhakti Chavda, Ana Rosa Saez-Ibanez, Inmaculada Tasset, Esperanza Arias, Xianhong Xie, Mimi Kim, Susmita Kaushik, Ana Maria Cuervo
{"title":"Sex-specific and cell-type-specific changes in chaperone-mediated autophagy across tissues during aging.","authors":"Rabia R Khawaja, Adrián Martín-Segura, Olaya Santiago-Fernández, Rebecca Sereda, Kristen Lindenau, Mericka McCabe, Adrián Macho-González, Maryam Jafari, Aurora Scrivo, Raquel Gomez-Sintes, Bhakti Chavda, Ana Rosa Saez-Ibanez, Inmaculada Tasset, Esperanza Arias, Xianhong Xie, Mimi Kim, Susmita Kaushik, Ana Maria Cuervo","doi":"10.1038/s43587-024-00799-6","DOIUrl":null,"url":null,"abstract":"<p><p>Aging leads to progressive decline in organ and tissue integrity and function, partly due to loss of proteostasis and autophagy malfunctioning. A decrease with age in chaperone-mediated autophagy (CMA), a selective type of lysosomal degradation, has been reported in various organs and cells from rodents and humans. Disruption of CMA recapitulates features of aging, whereas activating CMA in mice protects against age-related diseases such as Alzheimer's, retinal degeneration and/or atherosclerosis. However, sex-specific and cell-type-specific differences in CMA with aging remain unexplored. Here, using CMA reporter mice and single-cell transcriptomic data, we report that most organs and cell types show CMA decline with age, with males exhibiting a greater decline with aging. Reduced CMA is often associated with fewer lysosomes competent for CMA. Transcriptional downregulation of CMA genes may further contribute to CMA decline, especially in males. These findings suggest that CMA differences may influence organ vulnerability to age-related degeneration.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":""},"PeriodicalIF":17.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-024-00799-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging leads to progressive decline in organ and tissue integrity and function, partly due to loss of proteostasis and autophagy malfunctioning. A decrease with age in chaperone-mediated autophagy (CMA), a selective type of lysosomal degradation, has been reported in various organs and cells from rodents and humans. Disruption of CMA recapitulates features of aging, whereas activating CMA in mice protects against age-related diseases such as Alzheimer's, retinal degeneration and/or atherosclerosis. However, sex-specific and cell-type-specific differences in CMA with aging remain unexplored. Here, using CMA reporter mice and single-cell transcriptomic data, we report that most organs and cell types show CMA decline with age, with males exhibiting a greater decline with aging. Reduced CMA is often associated with fewer lysosomes competent for CMA. Transcriptional downregulation of CMA genes may further contribute to CMA decline, especially in males. These findings suggest that CMA differences may influence organ vulnerability to age-related degeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
期刊最新文献
Recommendations for implementing the Hevolution Alliance for Aging Biomarkers initiative. Multi-omic profiling of sarcopenia identifies disrupted branched-chain amino acid catabolism as a causal mechanism and therapeutic target. Multiomics atlas reveals molecular and genetic drivers of human ovarian aging. Sex-specific and cell-type-specific changes in chaperone-mediated autophagy across tissues during aging. Transdisciplinary links between societal inequality and brain structure and dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1