Blair Lyons, Saurabh S Mogre, Karthik Vegesna, Jessica S Yu, Mark Hansen, Aadarsh Raghunathan, Graham T Johnson, Eran Agmon, Matthew Akamatsu
{"title":"Comparing simulations of actin filament compression reveals tradeoff between computational cost and capturing supertwist.","authors":"Blair Lyons, Saurabh S Mogre, Karthik Vegesna, Jessica S Yu, Mark Hansen, Aadarsh Raghunathan, Graham T Johnson, Eran Agmon, Matthew Akamatsu","doi":"10.17912/micropub.biology.001347","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic bending and twisting of actin drives numerous cellular processes. To compare how different spatial scales in actin models capture these dynamics, we developed two models of actin filaments: one at monomer-scale using ReaDDy and one at fiber-scale using Cytosim. Simulating filament compression across a range of velocities, we found a divergence between the monomer- and fiber-scale simulations; notably, the monomer-scale simulations more effectively captured filament supertwist, characteristic of helical structure, but at a higher computational cost. Such comparisons can aid in designing more efficient and accurate multi-scale biological models. Interactive visualizations at https://simularium.github.io/subcell-website.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795302/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic bending and twisting of actin drives numerous cellular processes. To compare how different spatial scales in actin models capture these dynamics, we developed two models of actin filaments: one at monomer-scale using ReaDDy and one at fiber-scale using Cytosim. Simulating filament compression across a range of velocities, we found a divergence between the monomer- and fiber-scale simulations; notably, the monomer-scale simulations more effectively captured filament supertwist, characteristic of helical structure, but at a higher computational cost. Such comparisons can aid in designing more efficient and accurate multi-scale biological models. Interactive visualizations at https://simularium.github.io/subcell-website.