Effects of Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Triterpene on Motor and Spatial Learning Disorders in 5xFAD Mice.

Chang Zhang, Yuanzi Ye, Weiyao Wang, Chunyan Wang, Peigang Gao, Peng Wan
{"title":"Effects of Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Triterpene on Motor and Spatial Learning Disorders in 5xFAD Mice.","authors":"Chang Zhang, Yuanzi Ye, Weiyao Wang, Chunyan Wang, Peigang Gao, Peng Wan","doi":"10.1615/IntJMedMushrooms.2024057835","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that gradually destroys cognitive, memory, and thinking skills. Although increasing evidence has demonstrated that Ganoderma lucidum triterpenoids (GLT) can ameliorate the motor and spatial learning disorders of AD, the underlying mechanism remains unclear. Hence, in this study, GLT were obtained by using a traditional Chinese medicine processing method, and then the effects of GLT on motor and spatial learning disorders in 5xFAD mice were investigated by using various techniques such as behavioral analysis, micro-dialysis, and neurophysiological recording. Compared with the 5xFAD group, 0.5 g/kg GLT could decrease escape latency, the total number of limb errors, and the duration of errors. This dose could also increase the number of crossing the original platform, the total movement time, and the distance in the central region of the open-field box, as well as the maximum movement speed and continuous movement time on the rotating rod. After GLT treatment, the glutamate (Glu) content and variation coefficient of a simple spike of Purkinje cells decreased compared with the 5xFAD group, thereby improving the spatial learning and memory ability. Overall, this study shows that GLT may be a potential therapeutic method for patients with AD.</p>","PeriodicalId":94323,"journal":{"name":"International journal of medicinal mushrooms","volume":"27 4","pages":"21-37"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medicinal mushrooms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/IntJMedMushrooms.2024057835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that gradually destroys cognitive, memory, and thinking skills. Although increasing evidence has demonstrated that Ganoderma lucidum triterpenoids (GLT) can ameliorate the motor and spatial learning disorders of AD, the underlying mechanism remains unclear. Hence, in this study, GLT were obtained by using a traditional Chinese medicine processing method, and then the effects of GLT on motor and spatial learning disorders in 5xFAD mice were investigated by using various techniques such as behavioral analysis, micro-dialysis, and neurophysiological recording. Compared with the 5xFAD group, 0.5 g/kg GLT could decrease escape latency, the total number of limb errors, and the duration of errors. This dose could also increase the number of crossing the original platform, the total movement time, and the distance in the central region of the open-field box, as well as the maximum movement speed and continuous movement time on the rotating rod. After GLT treatment, the glutamate (Glu) content and variation coefficient of a simple spike of Purkinje cells decreased compared with the 5xFAD group, thereby improving the spatial learning and memory ability. Overall, this study shows that GLT may be a potential therapeutic method for patients with AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of Submerged Fermentation Conditions for Polysaccharide Production in Species of the Genus Ganoderma (Agaricomycetes) and Comparative Analysis of the Antioxidant Activities of Different Strains. Preparation and Characterization of a Novel Magnetic Molecularly Imprinted Polymer Capable of Isolating and Purifying Cordycepin from a Submerged Culture of the Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Quantitative LC-QToF-MS Analysis of Mycochemicals in Amanita muscaria, Psilocybe spp. (Agaricomycetes), and Consumer Products. The Giant Polypore Mushroom Meripilus giganteus (Agaricomycetes): Promising Medicinal Applications (A Review). Antifungal Properties of Polycephalomyces nipponicus (Ascomycetes) against Candida albicans: Potential for Novel Therapeutic Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1