Preferences for energy efficient cars in New Delhi: a discrete choice experiment exploring regulatory and non-regulatory interventions

IF 3.5 2区 工程技术 Q1 ENGINEERING, CIVIL Transportation Pub Date : 2025-02-07 DOI:10.1007/s11116-025-10581-1
Charu Grover Sharma, Sangeeta Bansal, Adan L. Martinez-Cruz
{"title":"Preferences for energy efficient cars in New Delhi: a discrete choice experiment exploring regulatory and non-regulatory interventions","authors":"Charu Grover Sharma, Sangeeta Bansal, Adan L. Martinez-Cruz","doi":"10.1007/s11116-025-10581-1","DOIUrl":null,"url":null,"abstract":"<p>Tackling India’s contribution to global carbon emissions is a priority from both national and international perspectives. Energy efficiency gains in Indian’s transportation sector have been suggested as a promising way to mitigate carbon emissions. The Indian government is considering fuel efficiency labels for new passenger cars. Via a discrete choice experiment, this paper investigates how regulatory and non-regulatory interventions can be used to boost adoption of energy efficient cars in India. It estimates New Delhi’s car buyers’ willingness to pay (WTP) for a car displaying a best-efficiency label (which is about 54 to 85% more fuel efficient as compared to a usual car) to be 6 thousand USD or about 30% of what respondents would be willing to pay for a new car. However, the informational nudge embedded in labeling systems may not be enough to boost uptake of efficient cars. Thus, via a split-sample approach, it further investigates the potential of combining non-regulatory interventions—labeling system and peer effects—with a driving restrictions regulation. WTP for a best-efficiency label car increases by over 100% to 13.46 thousand USD under a driving restrictions regulation. The difference in WTP for a best-efficiency label across driving restrictions and no driving restrictions scenarios reflect regulatory costs faced by car drivers. By including an interaction effect between best-efficiency label and mileage in the econometric specifications, we show that these costs depend on the actual mileage of the car under consideration—with lower regulatory costs as actual efficiency improves. A latent class logit specification suggests that around 40% to 52% of respondents—labeled extrinsically-motivated adopters—would be responsive to peer effects.</p>","PeriodicalId":49419,"journal":{"name":"Transportation","volume":"40 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11116-025-10581-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Tackling India’s contribution to global carbon emissions is a priority from both national and international perspectives. Energy efficiency gains in Indian’s transportation sector have been suggested as a promising way to mitigate carbon emissions. The Indian government is considering fuel efficiency labels for new passenger cars. Via a discrete choice experiment, this paper investigates how regulatory and non-regulatory interventions can be used to boost adoption of energy efficient cars in India. It estimates New Delhi’s car buyers’ willingness to pay (WTP) for a car displaying a best-efficiency label (which is about 54 to 85% more fuel efficient as compared to a usual car) to be 6 thousand USD or about 30% of what respondents would be willing to pay for a new car. However, the informational nudge embedded in labeling systems may not be enough to boost uptake of efficient cars. Thus, via a split-sample approach, it further investigates the potential of combining non-regulatory interventions—labeling system and peer effects—with a driving restrictions regulation. WTP for a best-efficiency label car increases by over 100% to 13.46 thousand USD under a driving restrictions regulation. The difference in WTP for a best-efficiency label across driving restrictions and no driving restrictions scenarios reflect regulatory costs faced by car drivers. By including an interaction effect between best-efficiency label and mileage in the econometric specifications, we show that these costs depend on the actual mileage of the car under consideration—with lower regulatory costs as actual efficiency improves. A latent class logit specification suggests that around 40% to 52% of respondents—labeled extrinsically-motivated adopters—would be responsive to peer effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation
Transportation 工程技术-工程:土木
CiteScore
10.70
自引率
4.70%
发文量
94
审稿时长
6-12 weeks
期刊介绍: In our first issue, published in 1972, we explained that this Journal is intended to promote the free and vigorous exchange of ideas and experience among the worldwide community actively concerned with transportation policy, planning and practice. That continues to be our mission, with a clear focus on topics concerned with research and practice in transportation policy and planning, around the world. These four words, policy and planning, research and practice are our key words. While we have a particular focus on transportation policy analysis and travel behaviour in the context of ground transportation, we willingly consider all good quality papers that are highly relevant to transportation policy, planning and practice with a clear focus on innovation, on extending the international pool of knowledge and understanding. Our interest is not only with transportation policies - and systems and services – but also with their social, economic and environmental impacts, However, papers about the application of established procedures to, or the development of plans or policies for, specific locations are unlikely to prove acceptable unless they report experience which will be of real benefit those working elsewhere. Papers concerned with the engineering, safety and operational management of transportation systems are outside our scope.
期刊最新文献
Identification and investigation of cruising speeds from cycling GPS data Beyond metros: pollution mitigation and environmental benefits in diverse transit systems Pffm-se: a passenger flow forecasting model for urban rail transit based on multimodal fusion of AFC and social media sentiment under special events Calibration of vehicular traffic simulation models by local optimization Agent-based modelling of older adult needs for autonomous mobility-on-demand: a case study in Winnipeg, Canada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1