Observation of Out-of-Plane Antidamping Torque at the Platinum/Permalloy Interface

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-02-07 DOI:10.1021/acsami.4c18895
John Rex Mohan, Utkarsh Shashank, Angshuman Deka, Takayasu Hanashima, Rohit Medwal, Surbhi Gupta, Rajdeep Singh Rawat, Hironori Asada, Yasuhiro Fukuma
{"title":"Observation of Out-of-Plane Antidamping Torque at the Platinum/Permalloy Interface","authors":"John Rex Mohan, Utkarsh Shashank, Angshuman Deka, Takayasu Hanashima, Rohit Medwal, Surbhi Gupta, Rajdeep Singh Rawat, Hironori Asada, Yasuhiro Fukuma","doi":"10.1021/acsami.4c18895","DOIUrl":null,"url":null,"abstract":"Achieving electrical control of ferromagnets without magnetic fields is crucial for the dense integration of nanodevices in modern memory and computing technologies. Current methods using spin orbit torques from the spin Hall effect and interfacial Rashba effect are limited to in-plane magnetized ferromagnets. Out-of-plane antidamping torque is essential for the electrical only control of ferromagnets with perpendicular magnetic anisotropy. In this work, we report the observation of out-of-plane polarized spin currents in platinum/permalloy bilayers, linked to interfacial perpendicular magnetic anisotropy at the interface between two metallic layers, as revealed by polarized neutron reflectometry. In-plane angle-resolved spin-torque ferromagnetic resonance measurements characterized the out-of-plane damping-like torque, constituting about 12% of the total torque in ultrathin Pt films, which vanishes when platinum thickness exceeds 4 nm, confirming its interfacial origin. This interfacial perpendicular magnetic anisotropy-induced torque is significant compared to the bulk spin Hall effect, which can be obtained in a typical heavy metal/ferromagnet bilayer. This advancement holds promise for enhancing the efficiency and reliability of spin orbit torque magnetic random-access memory (SOT-MRAM), spin Hall oscillators, and other spintronic devices.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"27 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18895","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving electrical control of ferromagnets without magnetic fields is crucial for the dense integration of nanodevices in modern memory and computing technologies. Current methods using spin orbit torques from the spin Hall effect and interfacial Rashba effect are limited to in-plane magnetized ferromagnets. Out-of-plane antidamping torque is essential for the electrical only control of ferromagnets with perpendicular magnetic anisotropy. In this work, we report the observation of out-of-plane polarized spin currents in platinum/permalloy bilayers, linked to interfacial perpendicular magnetic anisotropy at the interface between two metallic layers, as revealed by polarized neutron reflectometry. In-plane angle-resolved spin-torque ferromagnetic resonance measurements characterized the out-of-plane damping-like torque, constituting about 12% of the total torque in ultrathin Pt films, which vanishes when platinum thickness exceeds 4 nm, confirming its interfacial origin. This interfacial perpendicular magnetic anisotropy-induced torque is significant compared to the bulk spin Hall effect, which can be obtained in a typical heavy metal/ferromagnet bilayer. This advancement holds promise for enhancing the efficiency and reliability of spin orbit torque magnetic random-access memory (SOT-MRAM), spin Hall oscillators, and other spintronic devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased Hysteresis Benefited from Enhanced Lattice Oxygen and Promoted Band Alignment with Electron Transport Layer Modification in Perovskite Solar Cells Reinforcement of Carbazole-Based Self-Assembled Monolayers in Inverted Perovskite Solar Cells Fundamentals and Perspectives of Positively Charged Single-Metal Site Catalysts for CO2 Electroreduction Novel Polymer Gel Lubricant Functionalized with a Phosphate Anion for Friction Reduction and Film Thickness Enhancement in Multiple Lubrication Conditions Observation of Out-of-Plane Antidamping Torque at the Platinum/Permalloy Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1