Evaluation of energy and economic efficiency in upgrading coal-fired power plants: Integrating HTGR reactors and turboexpanders for supercritical steam parameters
{"title":"Evaluation of energy and economic efficiency in upgrading coal-fired power plants: Integrating HTGR reactors and turboexpanders for supercritical steam parameters","authors":"Ryszard Bartnik , Anna Hnydiuk-Stefan","doi":"10.1016/j.energy.2025.134763","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the energy efficiency and economic viability of modernizing coal-fired power plants by integrating high-temperature gas-cooled reactors (HTGRs) and turboexpanders to achieve supercritical steam parameters. The research employs an incremental methodology to analyze the potential benefits of this upgrade, focusing on the Joule and Clausius-Rankine cycles' integration. The study examines the impact of various operational parameters, particularly the helium outlet temperature from the turboexpander, on system performance and economic outcomes. Results indicate that the modernization can significantly improve overall plant efficiency, potentially reaching up to 41 %, which is substantially higher than conventional nuclear plants using PWR or BWR reactors. The economic analysis considers factors such as increased power output, operational costs, and potential revenue from additional electricity generation and avoided emissions penalties. The research highlights the importance of optimizing helium temperature and pressure to balance energy efficiency with investment costs. This modernization approach offers a promising pathway for enhancing the performance of existing power plants while addressing environmental concerns, potentially contributing to long-term energy security and sustainability in the power generation sector.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"318 ","pages":"Article 134763"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225004050","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the energy efficiency and economic viability of modernizing coal-fired power plants by integrating high-temperature gas-cooled reactors (HTGRs) and turboexpanders to achieve supercritical steam parameters. The research employs an incremental methodology to analyze the potential benefits of this upgrade, focusing on the Joule and Clausius-Rankine cycles' integration. The study examines the impact of various operational parameters, particularly the helium outlet temperature from the turboexpander, on system performance and economic outcomes. Results indicate that the modernization can significantly improve overall plant efficiency, potentially reaching up to 41 %, which is substantially higher than conventional nuclear plants using PWR or BWR reactors. The economic analysis considers factors such as increased power output, operational costs, and potential revenue from additional electricity generation and avoided emissions penalties. The research highlights the importance of optimizing helium temperature and pressure to balance energy efficiency with investment costs. This modernization approach offers a promising pathway for enhancing the performance of existing power plants while addressing environmental concerns, potentially contributing to long-term energy security and sustainability in the power generation sector.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.