{"title":"On matrix algebras isomorphic to finite fields and planar Dembowski-Ostrom monomials","authors":"Christof Beierle , Patrick Felke","doi":"10.1016/j.ffa.2025.102590","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>p</em> be a prime and <em>n</em> a positive integer. As the first main result, we present a <em>deterministic</em> algorithm for deciding whether the matrix algebra <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>]</mo></math></span> with <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>∈</mo><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> is a finite field, performing at most <span><math><mi>O</mi><mo>(</mo><mi>t</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></msup><mi>log</mi><mo></mo><mo>(</mo><mi>p</mi><mo>)</mo><mo>)</mo></math></span> elementary operations in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. In the affirmative case, the algorithm returns a defining element <em>a</em> so that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>a</mi><mo>]</mo></math></span>.</div><div>We then study an invariant for the extended-affine equivalence of Dembowski-Ostrom (DO) polynomials. More precisely, for a DO polynomial <span><math><mi>g</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, we associate to <em>g</em> a set of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices with coefficients in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, denoted <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span>, that stays invariant up to matrix similarity when applying extended-affine equivalence transformations to <em>g</em>. In the case where <em>g</em> is a <em>planar</em> DO polynomial, <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> is the set of quotients <span><math><mi>X</mi><msup><mrow><mi>Y</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>Y</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>X</mi></math></span> being elements from the spread set of the corresponding commutative presemifield, and <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> forms a field of order <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> if and only if <em>g</em> is equivalent to the planar monomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, i.e., if and only if the commutative presemifield associated to <em>g</em> is isotopic to a finite field.</div><div>As the second main result, we analyze the structure of <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> for all planar DO <em>monomials</em>, i.e., for commutative presemifields of odd order being isotopic to a finite field or a commutative twisted field. More precisely, for <em>g</em> being equivalent to a planar DO monomial, we show that every non-zero element <span><math><mi>X</mi><mo>∈</mo><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> generates a field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo><mo>⊆</mo><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> <em>contains</em> the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102590"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000206","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let p be a prime and n a positive integer. As the first main result, we present a deterministic algorithm for deciding whether the matrix algebra with is a finite field, performing at most elementary operations in . In the affirmative case, the algorithm returns a defining element a so that .
We then study an invariant for the extended-affine equivalence of Dembowski-Ostrom (DO) polynomials. More precisely, for a DO polynomial , we associate to g a set of matrices with coefficients in , denoted , that stays invariant up to matrix similarity when applying extended-affine equivalence transformations to g. In the case where g is a planar DO polynomial, is the set of quotients with being elements from the spread set of the corresponding commutative presemifield, and forms a field of order if and only if g is equivalent to the planar monomial , i.e., if and only if the commutative presemifield associated to g is isotopic to a finite field.
As the second main result, we analyze the structure of for all planar DO monomials, i.e., for commutative presemifields of odd order being isotopic to a finite field or a commutative twisted field. More precisely, for g being equivalent to a planar DO monomial, we show that every non-zero element generates a field and contains the field .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.