{"title":"Generative spatial artificial intelligence for sustainable smart cities: A pioneering large flow model for urban digital twin","authors":"Jeffrey Huang, Simon Elias Bibri, Paul Keel","doi":"10.1016/j.ese.2025.100526","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid urbanization, alongside escalating resource depletion and ecological degradation, underscores the critical need for innovative urban development solutions. In response, sustainable smart cities are increasingly turning to cutting-edge technologies—such as Generative Artificial Intelligence (GenAI), Foundation Models (FMs), and Urban Digital Twin (UDT) frameworks—to transform urban planning and design practices. These transformative tools provide advanced capabilities to analyze complex urban systems, optimize resource management, and enable evidence-based decision-making. Despite recent progress, research on integrating GenAI and FMs into UDT frameworks remains scant, leaving gaps in our ability to capture complex urban flows and multimodal dynamics essential to achieving environmental sustainability goals. Moreover, the lack of a robust theoretical foundation and real-world operationalization of these tools hampers comprehensive modeling and practical adoption. This study introduces a pioneering Large Flow Model (LFM), grounded in a robust foundational framework and designed with GenAI capabilities. It is specifically tailored for integration into UDT systems to enhance predictive analytics, adaptive learning, and complex data management functionalities. To validate its applicability and relevance, the Blue City Project in Lausanne City is examined as a case study, showcasing the ability of the LFM to effectively model and analyze urban flows—namely mobility, goods, energy, waste, materials, and biodiversity—critical to advancing environmental sustainability. This study highlights how the LFM addresses the spatial challenges inherent in current UDT frameworks. The LFM demonstrates its novelty in comprehensive urban modeling and analysis by completing impartial city data, estimating flow data in new locations, predicting the evolution of flow data, and offering a holistic understanding of urban dynamics and their interconnections. The model enhances decision-making processes, supports evidence-based planning and design, fosters integrated development strategies, and enables the development of more efficient, resilient, and sustainable urban environments. This research advances both the theoretical and practical dimensions of AI-driven, environmentally sustainable urban development by operationalizing GenAI and FMs within UDT frameworks. It provides sophisticated tools and valuable insights for urban planners, designers, policymakers, and researchers to address the complexities of modern cities and accelerate the transition towards sustainable urban futures.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100526"},"PeriodicalIF":14.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498425000043","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid urbanization, alongside escalating resource depletion and ecological degradation, underscores the critical need for innovative urban development solutions. In response, sustainable smart cities are increasingly turning to cutting-edge technologies—such as Generative Artificial Intelligence (GenAI), Foundation Models (FMs), and Urban Digital Twin (UDT) frameworks—to transform urban planning and design practices. These transformative tools provide advanced capabilities to analyze complex urban systems, optimize resource management, and enable evidence-based decision-making. Despite recent progress, research on integrating GenAI and FMs into UDT frameworks remains scant, leaving gaps in our ability to capture complex urban flows and multimodal dynamics essential to achieving environmental sustainability goals. Moreover, the lack of a robust theoretical foundation and real-world operationalization of these tools hampers comprehensive modeling and practical adoption. This study introduces a pioneering Large Flow Model (LFM), grounded in a robust foundational framework and designed with GenAI capabilities. It is specifically tailored for integration into UDT systems to enhance predictive analytics, adaptive learning, and complex data management functionalities. To validate its applicability and relevance, the Blue City Project in Lausanne City is examined as a case study, showcasing the ability of the LFM to effectively model and analyze urban flows—namely mobility, goods, energy, waste, materials, and biodiversity—critical to advancing environmental sustainability. This study highlights how the LFM addresses the spatial challenges inherent in current UDT frameworks. The LFM demonstrates its novelty in comprehensive urban modeling and analysis by completing impartial city data, estimating flow data in new locations, predicting the evolution of flow data, and offering a holistic understanding of urban dynamics and their interconnections. The model enhances decision-making processes, supports evidence-based planning and design, fosters integrated development strategies, and enables the development of more efficient, resilient, and sustainable urban environments. This research advances both the theoretical and practical dimensions of AI-driven, environmentally sustainable urban development by operationalizing GenAI and FMs within UDT frameworks. It provides sophisticated tools and valuable insights for urban planners, designers, policymakers, and researchers to address the complexities of modern cities and accelerate the transition towards sustainable urban futures.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.