Zhengquan Jiang , Jiahao Wu , Chuanwei Qiao , Laigui Yu , Jinglei Bi , Yadong Wang , Zhongzheng Yang , Shengmao Zhang , Yujuan Zhang , Weihua Li
{"title":"Tribological properties and lubrication mechanism of oleylamine-modified FeCoNi magnetic nanoparticles as additive in polar synthetic ester oil","authors":"Zhengquan Jiang , Jiahao Wu , Chuanwei Qiao , Laigui Yu , Jinglei Bi , Yadong Wang , Zhongzheng Yang , Shengmao Zhang , Yujuan Zhang , Weihua Li","doi":"10.1016/j.wear.2025.205764","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic ester oils are crucial for high-precision equipment lubrication. Strongly polar ester oils competitively adsorb with conventional additives, hindering their effectiveness. This paper proposes the use of FeCoNi nanoparticles as the additive for diisooctyl sebacate (DIOS), a polar synthetic ester oil, attempting to overcome the issue of competitive adsorption faced by traditional additives in polar base oils. Specifically, oleylamine-modified FeCoNi (OA-FeCoNi) nanoparticles were prepared as the additive for DIOS base oil by in situ surface modification technique combined with polyol method, a one-pot liquid-phase chemical method. Friction and wear tests as well as adsorption experiments confirmed the strong adsorption capability of OA-FeCoNi nanoparticles on steel surfaces, demonstrating their effectiveness in enhancing lubrication performance. The present approach, hopefully, would shed light on the facile and well available design and fabrication of efficient anti-wear and friction-reducing agents for polar synthetic ester oils.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"566 ","pages":"Article 205764"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004316482500033X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic ester oils are crucial for high-precision equipment lubrication. Strongly polar ester oils competitively adsorb with conventional additives, hindering their effectiveness. This paper proposes the use of FeCoNi nanoparticles as the additive for diisooctyl sebacate (DIOS), a polar synthetic ester oil, attempting to overcome the issue of competitive adsorption faced by traditional additives in polar base oils. Specifically, oleylamine-modified FeCoNi (OA-FeCoNi) nanoparticles were prepared as the additive for DIOS base oil by in situ surface modification technique combined with polyol method, a one-pot liquid-phase chemical method. Friction and wear tests as well as adsorption experiments confirmed the strong adsorption capability of OA-FeCoNi nanoparticles on steel surfaces, demonstrating their effectiveness in enhancing lubrication performance. The present approach, hopefully, would shed light on the facile and well available design and fabrication of efficient anti-wear and friction-reducing agents for polar synthetic ester oils.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.