ZhiCai Zhang , JiaKun Wu , Chao Wang , ZhiQiang Hou , Yao Tang , Hao Li , Jiao Yang , Jun Gao , YiKan Yang , YangBin Liu , XiaoPing Ouyang , HaiKuo Wang
{"title":"High-pressure infiltration fabrication of WC-based self-lubricating ceramics with synergistic enhancement of mechanical and lubrication properties","authors":"ZhiCai Zhang , JiaKun Wu , Chao Wang , ZhiQiang Hou , Yao Tang , Hao Li , Jiao Yang , Jun Gao , YiKan Yang , YangBin Liu , XiaoPing Ouyang , HaiKuo Wang","doi":"10.1016/j.ijrmhm.2025.107089","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical performance defects of self-lubricating ceramics bottleneck restricting their development and application. Such a defect is attributed to the lubricant's hindering effect on the substrate's bonding during the sintering process. Here, we report a high-pressure infiltration scheme and present a two-step approach for preparing WC-based self-lubricating ceramics with excellent mechanical and lubrication properties. We have demonstrated that the process breaks through the limitations between mechanical and lubrication properties to improve the wear resistance of the ceramics significantly. The effects of residual stresses due to lubricating phases and the complex three-dimensional pore structure within the ceramics deserve extensive discussion. A multiple lubrication mechanism involving multiple particles is proposed based on frictional wear analysis. This straightforward strategy opens a gate to developing the next generation of self-lubricating ceramic materials.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"128 ","pages":"Article 107089"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026343682500054X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical performance defects of self-lubricating ceramics bottleneck restricting their development and application. Such a defect is attributed to the lubricant's hindering effect on the substrate's bonding during the sintering process. Here, we report a high-pressure infiltration scheme and present a two-step approach for preparing WC-based self-lubricating ceramics with excellent mechanical and lubrication properties. We have demonstrated that the process breaks through the limitations between mechanical and lubrication properties to improve the wear resistance of the ceramics significantly. The effects of residual stresses due to lubricating phases and the complex three-dimensional pore structure within the ceramics deserve extensive discussion. A multiple lubrication mechanism involving multiple particles is proposed based on frictional wear analysis. This straightforward strategy opens a gate to developing the next generation of self-lubricating ceramic materials.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.