Hongfa Lv , Shufang Li , Jian Guan , Peng Zhang , Lingcong Kong , Hongxia Ma , Dan Li , Xuming Deng , Xiaodi Niu , Jianfeng Wang
{"title":"Phloretin Targets Polyphosphate Kinase 1 to Attenuate Acinetobacter baumannii Virulence and Persistence In Vitro and In Vivo","authors":"Hongfa Lv , Shufang Li , Jian Guan , Peng Zhang , Lingcong Kong , Hongxia Ma , Dan Li , Xuming Deng , Xiaodi Niu , Jianfeng Wang","doi":"10.1016/j.eng.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div><em>Acinetobacter baumannii</em> (<em>A. baumannii</em>) is well known for its virulence and persistence, particularly in intensive care units. Therefore, new strategies and candidates to treat <em>A. baumannii</em> infection are urgently needed considering the emergence of drug-resistant bacteria. Polyphosphate kinase 1 (PPK1) is required for bacterial survival as it is involved in maintaining antibiotic resistance or tolerance, pathogenesis, and adversity resistance. Multiple phenotypic assays related to virulence and persistence were performed in this study, and phloretin was shown to attenuate <em>A. baumannii</em> virulence and persistence by inhibiting PPK1 activity. Phloretin hampered mobility, interfered with biofilm formation and decreased resistance to ampicillin, heat, and hydrogen peroxide stress in <em>A. baumannii</em>. The therapeutic effect was also examined in a mouse pneumonia infection model. Molecular simulation and site-directed mutagenesis revealed that ARG-22, MET-622, ASN-57, and ARG-65 were the sites of phloretin action against PPK1. Phloretin treatment led to changes in metabolic pathways associated with <em>A. baumannii</em> virulence and persistence, including glycerophospholipid metabolism and fatty acid biosynthesis. Furthermore, phloretin alleviated pneumonic injury in a mouse pneumonia infection model <em>in vivo</em>, indicating that phloretin is a promising compound for preventing <em>A. baumannii</em> infection resistance by targeting PPK1.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"43 ","pages":"Pages 258-271"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924005605","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acinetobacter baumannii (A. baumannii) is well known for its virulence and persistence, particularly in intensive care units. Therefore, new strategies and candidates to treat A. baumannii infection are urgently needed considering the emergence of drug-resistant bacteria. Polyphosphate kinase 1 (PPK1) is required for bacterial survival as it is involved in maintaining antibiotic resistance or tolerance, pathogenesis, and adversity resistance. Multiple phenotypic assays related to virulence and persistence were performed in this study, and phloretin was shown to attenuate A. baumannii virulence and persistence by inhibiting PPK1 activity. Phloretin hampered mobility, interfered with biofilm formation and decreased resistance to ampicillin, heat, and hydrogen peroxide stress in A. baumannii. The therapeutic effect was also examined in a mouse pneumonia infection model. Molecular simulation and site-directed mutagenesis revealed that ARG-22, MET-622, ASN-57, and ARG-65 were the sites of phloretin action against PPK1. Phloretin treatment led to changes in metabolic pathways associated with A. baumannii virulence and persistence, including glycerophospholipid metabolism and fatty acid biosynthesis. Furthermore, phloretin alleviated pneumonic injury in a mouse pneumonia infection model in vivo, indicating that phloretin is a promising compound for preventing A. baumannii infection resistance by targeting PPK1.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.