Neural prescribed-time dynamic positioning control of semi-submersible platforms with asymmetric input saturation

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Applied Ocean Research Pub Date : 2025-02-01 DOI:10.1016/j.apor.2025.104444
Chenfeng Huang, Yongsheng Dou, Zuojing Su, Xianku Zhang
{"title":"Neural prescribed-time dynamic positioning control of semi-submersible platforms with asymmetric input saturation","authors":"Chenfeng Huang,&nbsp;Yongsheng Dou,&nbsp;Zuojing Su,&nbsp;Xianku Zhang","doi":"10.1016/j.apor.2025.104444","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an adaptive prescribed-time control scheme to the dynamic positioning (DP) system of semi-submersible platforms (SSPs) in the presence of asymmetric input saturation. To eliminate the adverse effect induced by the input saturation, a saturated compensating auxiliary system is introduced. The system singularity problem is removed by automatically enlarging and recovering the velocity error by implanting a modification saturated signals into the velocity error. The dynamic errors are transformed into a new error variable by using a fixed-time tracking performance function (FTTPF). After that, the fixed-time funnel boundaries (FTFBs) will no longer need to be redesigned according to various initial attitude errors. Meanwhile, the trajectories of the attitude errors are limited to the designed boundaries over a finite time interval. In addition, the new errors in the closed-loop system are guaranteed to be semi-global uniformly ultimately bounded (SGUUB). Finally, two simulations are performed to illustrate the effectiveness and superiority of the proposed scheme.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"155 ","pages":"Article 104444"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014111872500032X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an adaptive prescribed-time control scheme to the dynamic positioning (DP) system of semi-submersible platforms (SSPs) in the presence of asymmetric input saturation. To eliminate the adverse effect induced by the input saturation, a saturated compensating auxiliary system is introduced. The system singularity problem is removed by automatically enlarging and recovering the velocity error by implanting a modification saturated signals into the velocity error. The dynamic errors are transformed into a new error variable by using a fixed-time tracking performance function (FTTPF). After that, the fixed-time funnel boundaries (FTFBs) will no longer need to be redesigned according to various initial attitude errors. Meanwhile, the trajectories of the attitude errors are limited to the designed boundaries over a finite time interval. In addition, the new errors in the closed-loop system are guaranteed to be semi-global uniformly ultimately bounded (SGUUB). Finally, two simulations are performed to illustrate the effectiveness and superiority of the proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
期刊最新文献
Cooperative event-triggered control for the multi-USVs via the formation reconstruction Modulus degradation characteristics of saturated marine coral sand under anisotropic consolidation and various loading frequencies Wave attenuation by juvenile and mature mangrove Kandelia Obovata with flexible canopies Modelling the hydrodynamic response of a floating offshore wind turbine – a comparative study Fatigue life characterisation of API X65 steel pipeline for internal vibrational loads under sea water condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1