A. Hosseinghorbani , C.I. Rivera-Solorio , M. Gijón-Rivera
{"title":"Performance improvement of concentrated photovoltaic thermal (CPVT) system using a novel insert","authors":"A. Hosseinghorbani , C.I. Rivera-Solorio , M. Gijón-Rivera","doi":"10.1016/j.energy.2025.134505","DOIUrl":null,"url":null,"abstract":"<div><div>Designing an efficient cooling system is crucial for concentrated photovoltaic thermal (CPVT) systems due to high non-uniform solar irradiance. This study investigates the effect of applying an innovative insert, the Variable Width Wavy (VWW) tape, on enhancement of CPVT system efficiency by reducing its PV cell temperature. A three-dimensional optical-thermal-electrical model is used, with solar irradiance simulated using the Monte Carlo Ray Tracing (MCRT) method and mapped as a heat flux profile onto the PV panel for application in the finite volume method (FVM). After validating the model, a comprehensive investigation is conducted on the thermo-hydraulic performance of the VWW tape compared with conventional twisted and wavy tapes. The findings reveal that implementing VWW inserts inside the duct leads to the formation of swirl flows with higher velocities compared to the wavy and twisted tapes, resulting in improved mixing, a higher convective heat transfer rate, and consequently, a greater reduction in PV cell temperature. The VWW tape, demonstrating superiority over other inserts with a performance evaluation criterion (PEC) of 1.86 compared to 1.29 for twisted tape and 1.77 for wavy tape, achieves the highest temperature drop and improvements in electrical and thermal efficiency of 6.8 K, 7.11 %, and 4.62 %, respectively.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"316 ","pages":"Article 134505"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225001471","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Designing an efficient cooling system is crucial for concentrated photovoltaic thermal (CPVT) systems due to high non-uniform solar irradiance. This study investigates the effect of applying an innovative insert, the Variable Width Wavy (VWW) tape, on enhancement of CPVT system efficiency by reducing its PV cell temperature. A three-dimensional optical-thermal-electrical model is used, with solar irradiance simulated using the Monte Carlo Ray Tracing (MCRT) method and mapped as a heat flux profile onto the PV panel for application in the finite volume method (FVM). After validating the model, a comprehensive investigation is conducted on the thermo-hydraulic performance of the VWW tape compared with conventional twisted and wavy tapes. The findings reveal that implementing VWW inserts inside the duct leads to the formation of swirl flows with higher velocities compared to the wavy and twisted tapes, resulting in improved mixing, a higher convective heat transfer rate, and consequently, a greater reduction in PV cell temperature. The VWW tape, demonstrating superiority over other inserts with a performance evaluation criterion (PEC) of 1.86 compared to 1.29 for twisted tape and 1.77 for wavy tape, achieves the highest temperature drop and improvements in electrical and thermal efficiency of 6.8 K, 7.11 %, and 4.62 %, respectively.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.