A land-cover-assisted super-resolution model for retrospective reconstruction of MODIS-like NDVI data across the continental United States by blending Landcover300m and GIMMS NDVI3g data

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecological Indicators Pub Date : 2025-02-01 DOI:10.1016/j.ecolind.2025.113176
Zhicheng Zhang , Zhenhua Xiong , Xuewen Zhou , Kun Xiao , Wei Wu , Qinchuan Xin
{"title":"A land-cover-assisted super-resolution model for retrospective reconstruction of MODIS-like NDVI data across the continental United States by blending Landcover300m and GIMMS NDVI3g data","authors":"Zhicheng Zhang ,&nbsp;Zhenhua Xiong ,&nbsp;Xuewen Zhou ,&nbsp;Kun Xiao ,&nbsp;Wei Wu ,&nbsp;Qinchuan Xin","doi":"10.1016/j.ecolind.2025.113176","DOIUrl":null,"url":null,"abstract":"<div><div>Long-term archives of remote sensing data hold values for identifying temporal changes occurring on the land surface. Moderate-spatial-resolution data acquired by sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have proven useful in large-scale studies. The absence of such data prior to the launch of MODIS in 2000 necessitates the retrospective reconstruction of MODIS-like datasets. While data fusion techniques are capable of generating spatiotemporally continuous data, challenges remain in capturing interannual variation of land surface dynamics at a spatial resolution where real observation data are lacking. This study introduces a novel deep learning-based model, termed the Land-Cover-assisted Super-Resolution SpatioTemporal Fusion model (LCSRSTF), designed to produce biweekly 500-meter MODIS-like data spanning from 1992 to 2010 across the Continental United States (CONUS). LCSRSTF integrates Landcover300m and the Global Inventory Modelling and Mapping Studies (GIMMS) NDVI3g data. The model exacts moderate-resolution class features from annual Landcover300m data at the target year, incorporates GIMMS NDVI3g time series to capture seasonal fluctuations, and employs the Long Short-Term Memory (LSTM) method to mitigate sensor differences. Evaluation against observed MODIS images confirms the robustness of our model in generating MODIS-like data across CONUS. The root mean square error (RMSE) of the model results is 0.094 from 2001 to 2010, while that of GIMMS NDVI3g data is 0.154. The linear regression coefficient for the model simulation is 0.872, compared to 0.844 for GIMMS data. The model exhibits reasonable predictive capabilities in reconstructing retrospective data when assessed using Landsat data prior to 2000. The developed method as well as the MODIS-like dataset spanning from 1992 to 2010 across CONUS hold the promise in extending the temporal span of moderate-spatial-resolution data, thereby facilitating comprehensive long-term studies of land surface dynamics.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"171 ","pages":"Article 113176"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X25001050","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term archives of remote sensing data hold values for identifying temporal changes occurring on the land surface. Moderate-spatial-resolution data acquired by sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have proven useful in large-scale studies. The absence of such data prior to the launch of MODIS in 2000 necessitates the retrospective reconstruction of MODIS-like datasets. While data fusion techniques are capable of generating spatiotemporally continuous data, challenges remain in capturing interannual variation of land surface dynamics at a spatial resolution where real observation data are lacking. This study introduces a novel deep learning-based model, termed the Land-Cover-assisted Super-Resolution SpatioTemporal Fusion model (LCSRSTF), designed to produce biweekly 500-meter MODIS-like data spanning from 1992 to 2010 across the Continental United States (CONUS). LCSRSTF integrates Landcover300m and the Global Inventory Modelling and Mapping Studies (GIMMS) NDVI3g data. The model exacts moderate-resolution class features from annual Landcover300m data at the target year, incorporates GIMMS NDVI3g time series to capture seasonal fluctuations, and employs the Long Short-Term Memory (LSTM) method to mitigate sensor differences. Evaluation against observed MODIS images confirms the robustness of our model in generating MODIS-like data across CONUS. The root mean square error (RMSE) of the model results is 0.094 from 2001 to 2010, while that of GIMMS NDVI3g data is 0.154. The linear regression coefficient for the model simulation is 0.872, compared to 0.844 for GIMMS data. The model exhibits reasonable predictive capabilities in reconstructing retrospective data when assessed using Landsat data prior to 2000. The developed method as well as the MODIS-like dataset spanning from 1992 to 2010 across CONUS hold the promise in extending the temporal span of moderate-spatial-resolution data, thereby facilitating comprehensive long-term studies of land surface dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
期刊最新文献
Assessing the impact of China’s forest chief system on forest ecological security: An integrated ArcGIS and econometric analysis Expanding the European water Framework Directive indicators to address long-term climate change impacts on lakes using mechanistic lake models Temporal analyses of global suitability distribution for fall armyworm based on Multiple factors Linking the life stages of fish into a habitat-ecological flow assessment scheme under climate change and human activities Spatial-temporal differentiation and influencing factors of ecosystem health in Three-River-Source national Park
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1