Rapidly quantification of intact infectious H1N1 virus using ICA-qPCR and PMA-qPCR

IF 3.5 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Biosafety and Health Pub Date : 2024-12-01 DOI:10.1016/j.bsheal.2024.11.004
Chudan Liang , Zequn Wang , Linjin Fan , Yulong Wang , Yuandong Zhou , Xiaofeng Yang , Jingyan Lin , Pengfei Ye , Wendi Shi , Hongxin Huang , Huijun Yan , Linna Liu , Jun Qian
{"title":"Rapidly quantification of intact infectious H1N1 virus using ICA-qPCR and PMA-qPCR","authors":"Chudan Liang ,&nbsp;Zequn Wang ,&nbsp;Linjin Fan ,&nbsp;Yulong Wang ,&nbsp;Yuandong Zhou ,&nbsp;Xiaofeng Yang ,&nbsp;Jingyan Lin ,&nbsp;Pengfei Ye ,&nbsp;Wendi Shi ,&nbsp;Hongxin Huang ,&nbsp;Huijun Yan ,&nbsp;Linna Liu ,&nbsp;Jun Qian","doi":"10.1016/j.bsheal.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>The increase in emerging and reemerging infectious diseases has underscored the need for the prompt monitoring of intact infectious viruses and the quick assessment of their infectivity. However, molecular techniques cannot distinguish between intact infectious and noninfectious viruses. Here, two distinct methodologies have been developed for the expeditious and dependable quantification of intact infectious H1N1 virus, and several experiments have been conducted to substantiate their efficacy. One is an integrated cell absorption quantitative polymerase chain reaction (qPCR) method (ICA-qPCR), and the other is a combined propidium monoazide qPCR method (PMA-qPCR). The quantification limit is 100 cell culture infective dose 50 % (CCID<sub>50</sub>)/mL in ICA-qPCR following a 1.5-hour cell absorption or 126 CCID<sub>50</sub>/mL after a 15-minute incubation. For PMA-qPCR, the limit was 2,512 CCID<sub>50</sub>/mL. The number of genome copies quantified by the ICA-qPCR and PMA-qPCR methods was strongly correlated with the infectious titer determined by the CCID<sub>50</sub> assay, thereby enabling the estimation of virus infectivity. The ICA-qPCR and PMA-qPCR methods are both suitable for the identification and quantification of intact infectious H1N1 virus in inactivated samples, wastewater, and biological materials. In conclusion, the ICA-qPCR and PMA-qPCR methods have distinct advantages and disadvantages, and can be used to quantify intact infectious viruses rapidly. These methodologies can facilitate the identification of the presence of intact infectious viruses in wastewater or on pathogen-related physical surfaces in high-level biosafety laboratories and medical facilities. Furthermore, these methodologies can also be utilized to detect other highly pathogenic pathogens.</div></div>","PeriodicalId":36178,"journal":{"name":"Biosafety and Health","volume":"6 6","pages":"Pages 327-336"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosafety and Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590053624001356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in emerging and reemerging infectious diseases has underscored the need for the prompt monitoring of intact infectious viruses and the quick assessment of their infectivity. However, molecular techniques cannot distinguish between intact infectious and noninfectious viruses. Here, two distinct methodologies have been developed for the expeditious and dependable quantification of intact infectious H1N1 virus, and several experiments have been conducted to substantiate their efficacy. One is an integrated cell absorption quantitative polymerase chain reaction (qPCR) method (ICA-qPCR), and the other is a combined propidium monoazide qPCR method (PMA-qPCR). The quantification limit is 100 cell culture infective dose 50 % (CCID50)/mL in ICA-qPCR following a 1.5-hour cell absorption or 126 CCID50/mL after a 15-minute incubation. For PMA-qPCR, the limit was 2,512 CCID50/mL. The number of genome copies quantified by the ICA-qPCR and PMA-qPCR methods was strongly correlated with the infectious titer determined by the CCID50 assay, thereby enabling the estimation of virus infectivity. The ICA-qPCR and PMA-qPCR methods are both suitable for the identification and quantification of intact infectious H1N1 virus in inactivated samples, wastewater, and biological materials. In conclusion, the ICA-qPCR and PMA-qPCR methods have distinct advantages and disadvantages, and can be used to quantify intact infectious viruses rapidly. These methodologies can facilitate the identification of the presence of intact infectious viruses in wastewater or on pathogen-related physical surfaces in high-level biosafety laboratories and medical facilities. Furthermore, these methodologies can also be utilized to detect other highly pathogenic pathogens.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosafety and Health
Biosafety and Health Medicine-Infectious Diseases
CiteScore
7.60
自引率
0.00%
发文量
116
审稿时长
66 days
期刊最新文献
Rapid generation and characterization of recombinant HCoV-OC43-VR1558 infectious clones expressing reporter Renilla luciferase Narciclasine inhibits vaccinia virus infection by activating the RhoA signaling pathway Molecular epidemiological study on tick-borne pathogens in Qinghai Province, Northwestern China A comparative analysis of influenza and COVID-19: Environmental-ecological impacts, socioeconomic implications, and future challenges Towards the first synthetic eukaryotic cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1