Water use in the industrial sector based on the IPAC model under the carbon-neutral transformation path in China

IF 6.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Advances in Climate Change Research Pub Date : 2024-12-01 DOI:10.1016/j.accre.2024.11.004
Yu-Jie Jiao , Ke-Jun Jiang , Sha Chen , Pian-Pian Xiang , Chen-Min He
{"title":"Water use in the industrial sector based on the IPAC model under the carbon-neutral transformation path in China","authors":"Yu-Jie Jiao ,&nbsp;Ke-Jun Jiang ,&nbsp;Sha Chen ,&nbsp;Pian-Pian Xiang ,&nbsp;Chen-Min He","doi":"10.1016/j.accre.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>To examine the impact of promoting transformative hydrogen-based technologies on water demand in traditional high-energy and high-water-consuming sectors under the carbon-neutral transition, this study investigates the industrial sector transformation path. It compares the water consumption of current production processes with future hydrogen-based and advanced water-saving technologies. By developing a model, the study analyses the water-saving potential of 54 water-saving and hydrogen-based technologies across three water consumption scenarios and evaluates their impact on industrial water use. This study highlights the pivotal role of water-saving technologies in transforming industrial sectors, particularly in the paper and textile industries, where zero-emission technologies have considerably reduced water demand. Water savings in the paper industry are projected to increase from 24.29 Mt in 2025 to 101.44 Mt in 2050, representing an 8.5% increase. In the chemical fibre sector, additional water savings are expected to reach 106.93 Mt by 2050, with an 11.6% increase in water-saving efficiency. Similarly, the textile dyeing and finishing sector is anticipated to achieve an additional water saving of 26.45 Mt by 2050, corresponding to a 17.5% improvement. The findings indicate that the adoption of hydrogen-based technologies will considerably reduce water consumption in traditionally high-water-consuming industries such as steel, synthetic ammonia, ethylene, and methanol. This reduction becomes particularly evident by 2050 under the baseline pathway and low water consumption scenarios, in which the impact of water-saving technologies becomes less prominent. By 2050, water consumption in the steel, ethylene, synthetic ammonia, and methanol industries is projected to decrease to 985.93, 59.11, 242.4, and 268.29 Mt, respectively. These findings highlight the potential of hydrogen-based technologies in advancing water conservation. By 2050, the chemical industry is projected to reduce water stress by transitioning from traditional water-saving technologies to the integration of automation and hydrogen-based solutions.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 6","pages":"Pages 1130-1146"},"PeriodicalIF":6.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167492782400176X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To examine the impact of promoting transformative hydrogen-based technologies on water demand in traditional high-energy and high-water-consuming sectors under the carbon-neutral transition, this study investigates the industrial sector transformation path. It compares the water consumption of current production processes with future hydrogen-based and advanced water-saving technologies. By developing a model, the study analyses the water-saving potential of 54 water-saving and hydrogen-based technologies across three water consumption scenarios and evaluates their impact on industrial water use. This study highlights the pivotal role of water-saving technologies in transforming industrial sectors, particularly in the paper and textile industries, where zero-emission technologies have considerably reduced water demand. Water savings in the paper industry are projected to increase from 24.29 Mt in 2025 to 101.44 Mt in 2050, representing an 8.5% increase. In the chemical fibre sector, additional water savings are expected to reach 106.93 Mt by 2050, with an 11.6% increase in water-saving efficiency. Similarly, the textile dyeing and finishing sector is anticipated to achieve an additional water saving of 26.45 Mt by 2050, corresponding to a 17.5% improvement. The findings indicate that the adoption of hydrogen-based technologies will considerably reduce water consumption in traditionally high-water-consuming industries such as steel, synthetic ammonia, ethylene, and methanol. This reduction becomes particularly evident by 2050 under the baseline pathway and low water consumption scenarios, in which the impact of water-saving technologies becomes less prominent. By 2050, water consumption in the steel, ethylene, synthetic ammonia, and methanol industries is projected to decrease to 985.93, 59.11, 242.4, and 268.29 Mt, respectively. These findings highlight the potential of hydrogen-based technologies in advancing water conservation. By 2050, the chemical industry is projected to reduce water stress by transitioning from traditional water-saving technologies to the integration of automation and hydrogen-based solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Climate Change Research
Advances in Climate Change Research Earth and Planetary Sciences-Atmospheric Science
CiteScore
9.80
自引率
4.10%
发文量
424
审稿时长
107 days
期刊介绍: Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change. Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.
期刊最新文献
Editorial Board Decoupling effect and influencing factors of carbon emissions in China: Based on production, consumption, and income responsibilities Thermal enhancement of targeted cooling thermosyphon array applied to the embankment–bridge transition section of the Qinghai–Tibet Railway in warm permafrost An integrated assessment of technological pathways and socioeconomic impacts for sustainable power system transition in Indonesia Representative CO2 emissions pathways for China's provinces toward carbon neutrality under the Paris Agreement's 2 °C target
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1