Target reproduction numbers for time-delayed population systems

IF 1.9 4区 数学 Q2 BIOLOGY Mathematical Biosciences Pub Date : 2025-02-04 DOI:10.1016/j.mbs.2025.109384
Xueying Wang , Xiao-Qiang Zhao
{"title":"Target reproduction numbers for time-delayed population systems","authors":"Xueying Wang ,&nbsp;Xiao-Qiang Zhao","doi":"10.1016/j.mbs.2025.109384","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of population dynamics, target reproduction number is a crucial metric that dictates the necessary control efforts for achieving specific prevention, intervention, or control goals. Recently, the concept of the target reproduction number has undergone significant extensions. Lewis et al. <span><span>[1]</span></span> presented a general framework of the target reproduction number for nonnegative matrices, and Wang and Zhao <span><span>[2]</span></span> further developed it to positive operators on an ordered Banach space. These extensions encompass fundamental metrics like basic reproduction number and type reproduction number, along with other threshold parameters from existing literature, elucidating their roles in population control. In the current paper, we establish the theory of target reproduction number for a large class of compartmental population models with time delay in the case where control is targeted toward either new infection/production or internal evolution/transition. It turns out that the target reproduction number of the original time-delayed population model can be viewed as a basic reproduction number of some modified system. At the end, we apply these analytic results to three epidemic models, which enhances our theoretical understanding and provides valuable insights for effective strategies in population-based interventions and control measures.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"381 ","pages":"Article 109384"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425000112","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of population dynamics, target reproduction number is a crucial metric that dictates the necessary control efforts for achieving specific prevention, intervention, or control goals. Recently, the concept of the target reproduction number has undergone significant extensions. Lewis et al. [1] presented a general framework of the target reproduction number for nonnegative matrices, and Wang and Zhao [2] further developed it to positive operators on an ordered Banach space. These extensions encompass fundamental metrics like basic reproduction number and type reproduction number, along with other threshold parameters from existing literature, elucidating their roles in population control. In the current paper, we establish the theory of target reproduction number for a large class of compartmental population models with time delay in the case where control is targeted toward either new infection/production or internal evolution/transition. It turns out that the target reproduction number of the original time-delayed population model can be viewed as a basic reproduction number of some modified system. At the end, we apply these analytic results to three epidemic models, which enhances our theoretical understanding and provides valuable insights for effective strategies in population-based interventions and control measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
期刊最新文献
Target reproduction numbers for time-delayed population systems Editorial Board Modelling the stochastic importation dynamics and establishment of novel pathogenic strains using a general branching processes framework A simultaneous simulation of human behavior dynamics and epidemic spread: A multi-country study amidst the COVID-19 pandemic Chemotaxis effects on the vascular tumor growth: Phase-field model and simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1