{"title":"Simulation-based inference of single-molecule experiments","authors":"Lars Dingeldein , Pilar Cossio , Roberto Covino","doi":"10.1016/j.sbi.2025.102988","DOIUrl":null,"url":null,"abstract":"<div><div>Single-molecule experiments are a unique tool to characterize the structural dynamics of biomolecules. However, reconstructing molecular details from noisy single-molecule data is challenging. Simulation-based inference (SBI) is a powerful framework for analyzing complex experimental data, integrating statistical inference, physics-based simulators, and machine learning. Recent advances in deep learning have accelerated the development of new SBI methods, enabling the application of Bayesian inference to an ever-increasing number of scientific problems. Here, we review the nascent application of SBI to the analysis of single-molecule experiments. We introduce parametric Bayesian inference and discuss its limitations. We then overview emerging deep learning–based SBI methods to perform Bayesian inference for complex models encoded in computer simulators. We illustrate the first applications of SBI to single-molecule force spectroscopy and cryo-electron microscopy experiments. SBI allows us to leverage powerful computer algorithms modeling complex biomolecular phenomena to connect scientific models and experiments in a principled way.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"91 ","pages":"Article 102988"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000065","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-molecule experiments are a unique tool to characterize the structural dynamics of biomolecules. However, reconstructing molecular details from noisy single-molecule data is challenging. Simulation-based inference (SBI) is a powerful framework for analyzing complex experimental data, integrating statistical inference, physics-based simulators, and machine learning. Recent advances in deep learning have accelerated the development of new SBI methods, enabling the application of Bayesian inference to an ever-increasing number of scientific problems. Here, we review the nascent application of SBI to the analysis of single-molecule experiments. We introduce parametric Bayesian inference and discuss its limitations. We then overview emerging deep learning–based SBI methods to perform Bayesian inference for complex models encoded in computer simulators. We illustrate the first applications of SBI to single-molecule force spectroscopy and cryo-electron microscopy experiments. SBI allows us to leverage powerful computer algorithms modeling complex biomolecular phenomena to connect scientific models and experiments in a principled way.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation