A tale of two drugs: Molnupiravir and Paxlovid

IF 6.4 2区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Mutation Research-Reviews in Mutation Research Pub Date : 2025-01-01 DOI:10.1016/j.mrrev.2025.108533
Michael D. Waters , Stafford G. Warren
{"title":"A tale of two drugs: Molnupiravir and Paxlovid","authors":"Michael D. Waters ,&nbsp;Stafford G. Warren","doi":"10.1016/j.mrrev.2025.108533","DOIUrl":null,"url":null,"abstract":"<div><div>The orally administered antiviral drug Lagevrio or molnupiravir (MOV) and the combination antiviral drug nirmatrelvir/ritonavir or Paxlovid (PAX) have been shown to reduce the likelihood of hospitalization and death for high-risk patients with COVID-19. Clinical studies, including those comparing PAX and MOV, were reviewed; both drugs are effective in reducing morbidity and mortality in COVID patients, although PAX generally appears to be more efficacious. Both drugs received Emergency Use Authorization in the United States for mild to moderate COVID-19 infection, while only PAX has subsequently been given full FDA approval. The principal disadvantage of PAX is that it interacts with many commonly used drugs, while MOV does not. The purpose of this review is to summarize current information and knowledge about these two drugs. The two drugs have completely different mechanisms of action. PAX inhibits viral replication while MOV induces viral replication errors that are expected to lead to viral inactivation. There is, however, the potential that MOV also could mutate host DNA and cause the virus to mutate into variants with new features. The package insert for MOV states that patients should be notified of relevant toxicity issues before administration. Sensitive mutation detection/analysis studies, such as error corrected Next Generation Sequencing (ecNGS) or HPRT mutation detection assays, in MOV-treated patients are needed to establish the safety of MOV.</div></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"795 ","pages":"Article 108533"},"PeriodicalIF":6.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574225000043","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The orally administered antiviral drug Lagevrio or molnupiravir (MOV) and the combination antiviral drug nirmatrelvir/ritonavir or Paxlovid (PAX) have been shown to reduce the likelihood of hospitalization and death for high-risk patients with COVID-19. Clinical studies, including those comparing PAX and MOV, were reviewed; both drugs are effective in reducing morbidity and mortality in COVID patients, although PAX generally appears to be more efficacious. Both drugs received Emergency Use Authorization in the United States for mild to moderate COVID-19 infection, while only PAX has subsequently been given full FDA approval. The principal disadvantage of PAX is that it interacts with many commonly used drugs, while MOV does not. The purpose of this review is to summarize current information and knowledge about these two drugs. The two drugs have completely different mechanisms of action. PAX inhibits viral replication while MOV induces viral replication errors that are expected to lead to viral inactivation. There is, however, the potential that MOV also could mutate host DNA and cause the virus to mutate into variants with new features. The package insert for MOV states that patients should be notified of relevant toxicity issues before administration. Sensitive mutation detection/analysis studies, such as error corrected Next Generation Sequencing (ecNGS) or HPRT mutation detection assays, in MOV-treated patients are needed to establish the safety of MOV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.20
自引率
1.90%
发文量
22
审稿时长
15.7 weeks
期刊介绍: The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.
期刊最新文献
Decoding complexity: The role of long-read sequencing in unraveling genetic disease etiologies The functional regulation between extracellular vesicles and the DNA damage responses Inverse dose protraction effects of high-LET radiation: Evidence and significance Inverse dose protraction effects of low-LET radiation: Evidence and significance A tale of two drugs: Molnupiravir and Paxlovid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1