Ahmad Zarei , Liya Hooshyari , Sohrab Zaboli , Marzie Babaie Rabiee , Saeed Akhavan , Sadegh Seddighi , Mehrdad Mesgarpour , Somchai Wongwises , Michael Schlüter , Goodarz Ahmadi , Christos N. Markides , Yonghai Zhang , Jianzhong Lin , Omid Mahian
{"title":"Bubble injection for heat transfer enhancement: From physics to applications","authors":"Ahmad Zarei , Liya Hooshyari , Sohrab Zaboli , Marzie Babaie Rabiee , Saeed Akhavan , Sadegh Seddighi , Mehrdad Mesgarpour , Somchai Wongwises , Michael Schlüter , Goodarz Ahmadi , Christos N. Markides , Yonghai Zhang , Jianzhong Lin , Omid Mahian","doi":"10.1016/j.physrep.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a comprehensive review of recent advancements in bubble-induced heat transfer enhancement, with a primary focus on understanding the fundamental underlying physics. Accordingly, this review first highlights recent novel concepts and techniques developed to enhance heat transfer through bubble injection, followed by explaining the essential physical aspects of this development. It attempts to clarify the impact of bubble injection on heat transfer by examining key mechanisms in two-phase bubbly flow. The factors that influence heat transfer and fluid flow, including mechanisms of bubble ascent, bubble breakage, and coalescence, as well as the impact of bubble size and shape, are examined. Furthermore, the review explores the use of bubble injection in different types of heat exchangers in addition to other applications, including solar collectors, hydrogen production, internal combustion engines, and energy storage systems. Furthermore, the article identifies current research gaps and existing challenges and suggests potential directions for future research in bubble-induced heat transfer enhancement.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1112 ","pages":"Pages 1-117"},"PeriodicalIF":23.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324003314","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a comprehensive review of recent advancements in bubble-induced heat transfer enhancement, with a primary focus on understanding the fundamental underlying physics. Accordingly, this review first highlights recent novel concepts and techniques developed to enhance heat transfer through bubble injection, followed by explaining the essential physical aspects of this development. It attempts to clarify the impact of bubble injection on heat transfer by examining key mechanisms in two-phase bubbly flow. The factors that influence heat transfer and fluid flow, including mechanisms of bubble ascent, bubble breakage, and coalescence, as well as the impact of bubble size and shape, are examined. Furthermore, the review explores the use of bubble injection in different types of heat exchangers in addition to other applications, including solar collectors, hydrogen production, internal combustion engines, and energy storage systems. Furthermore, the article identifies current research gaps and existing challenges and suggests potential directions for future research in bubble-induced heat transfer enhancement.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.