Federica Bragone , Kateryna Morozovska , Tomas Rosén , Tor Laneryd , Daniel Söderberg , Stefano Markidis
{"title":"Automatic learning analysis of flow-induced birefringence in cellulose nanofibrils","authors":"Federica Bragone , Kateryna Morozovska , Tomas Rosén , Tor Laneryd , Daniel Söderberg , Stefano Markidis","doi":"10.1016/j.jocs.2025.102536","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulose Nanofibrils (CNFs), highly present in nature, can be used as building blocks for future sustainable materials, including strong and stiff filaments. A rheo-optical flow-stop technique is used to conduct experiments to characterize the CNFs by studying Brownian dynamics through the CNFs’ birefringence decay after stop. As the experiments produce large quantities of data, we reduce their dimensionality using Principal Component Analysis (PCA) and exploit the possibility of visualizing the reduced data in two ways. First, we plot the principal components (PCs) as time series, and by training LSTM networks assigned for each PC time series with the data before the flow stop, we predict the behavior after the flow stop (Bragone et al., 2024). Second, we plot the first PCs against each other to create clusters that give information about the different CNF materials and concentrations. Our approach aims at classifying the CNF materials to varying concentrations by applying unsupervised machine learning algorithms, such as <em>k</em>-means and Gaussian Mixture Models (GMMs). Finally, we analyze the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) of the first principal component, detecting seasonality in lower concentrations.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"85 ","pages":"Article 102536"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325000134","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose Nanofibrils (CNFs), highly present in nature, can be used as building blocks for future sustainable materials, including strong and stiff filaments. A rheo-optical flow-stop technique is used to conduct experiments to characterize the CNFs by studying Brownian dynamics through the CNFs’ birefringence decay after stop. As the experiments produce large quantities of data, we reduce their dimensionality using Principal Component Analysis (PCA) and exploit the possibility of visualizing the reduced data in two ways. First, we plot the principal components (PCs) as time series, and by training LSTM networks assigned for each PC time series with the data before the flow stop, we predict the behavior after the flow stop (Bragone et al., 2024). Second, we plot the first PCs against each other to create clusters that give information about the different CNF materials and concentrations. Our approach aims at classifying the CNF materials to varying concentrations by applying unsupervised machine learning algorithms, such as k-means and Gaussian Mixture Models (GMMs). Finally, we analyze the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) of the first principal component, detecting seasonality in lower concentrations.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).