Lignin derived hard carbon for sodium ion batteries: Recent advances and future perspectives

IF 33.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Progress in Materials Science Pub Date : 2025-02-04 DOI:10.1016/j.pmatsci.2025.101452
Ao Wang , Gaoyue Zhang , Meng Li , Yuntong Sun , Yawen Tang , Kang Sun , Jong-Min Lee , Gengtao Fu , Jianchun Jiang
{"title":"Lignin derived hard carbon for sodium ion batteries: Recent advances and future perspectives","authors":"Ao Wang ,&nbsp;Gaoyue Zhang ,&nbsp;Meng Li ,&nbsp;Yuntong Sun ,&nbsp;Yawen Tang ,&nbsp;Kang Sun ,&nbsp;Jong-Min Lee ,&nbsp;Gengtao Fu ,&nbsp;Jianchun Jiang","doi":"10.1016/j.pmatsci.2025.101452","DOIUrl":null,"url":null,"abstract":"<div><div>Lignin-derived hard carbon (LHC) is considered one of the most promising anode materials for sodium-ion batteries (SIBs) due to its abundant and renewable feedstocks, tunable microstructure, and excellent electrochemical performance. In recent years, significant progress has been achieved in the development of LHCs. However, a comprehensive review and critical evaluation of the existing research remain lacking, hindering their further advancement. To address this gap, this review first introduces the fundamental properties of lignin and hard carbon to elucidate the microstructural formation processes of LHCs. Subsequently, the fabrication methods and key characteristics of LHCs, along with the effects of feedstock properties and operating parameters on their microstructure and performance, are systematically summarized and analyzed. Particular attention is given to optimization strategies, including feedstock pretreatment, preparation process regulation, and post-treatment, to provide practical guidance for enhancing the overall performance of LHCs. Finally, suggestions and future perspectives for advancing LHCs in SIB applications are proposed based on the current research landscape and practical demands. This review aims to offer scientific insights into the microstructural regulation and electrochemical performance optimization of LHCs, thereby promoting their broader application in SIBs.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"152 ","pages":"Article 101452"},"PeriodicalIF":33.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525000271","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin-derived hard carbon (LHC) is considered one of the most promising anode materials for sodium-ion batteries (SIBs) due to its abundant and renewable feedstocks, tunable microstructure, and excellent electrochemical performance. In recent years, significant progress has been achieved in the development of LHCs. However, a comprehensive review and critical evaluation of the existing research remain lacking, hindering their further advancement. To address this gap, this review first introduces the fundamental properties of lignin and hard carbon to elucidate the microstructural formation processes of LHCs. Subsequently, the fabrication methods and key characteristics of LHCs, along with the effects of feedstock properties and operating parameters on their microstructure and performance, are systematically summarized and analyzed. Particular attention is given to optimization strategies, including feedstock pretreatment, preparation process regulation, and post-treatment, to provide practical guidance for enhancing the overall performance of LHCs. Finally, suggestions and future perspectives for advancing LHCs in SIB applications are proposed based on the current research landscape and practical demands. This review aims to offer scientific insights into the microstructural regulation and electrochemical performance optimization of LHCs, thereby promoting their broader application in SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Materials Science
Progress in Materials Science 工程技术-材料科学:综合
CiteScore
59.60
自引率
0.80%
发文量
101
审稿时长
11.4 months
期刊介绍: Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications. The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms. Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC). Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.
期刊最新文献
Emerging innovations in rubbery polymeric membranes for CO2 separation: A review Comprehensive crystallographic engineering for high-efficiency and durable zinc metal anodes Metal powder atomization preparation, modification, and reuse for additive manufacturing: A review Lignin derived hard carbon for sodium ion batteries: Recent advances and future perspectives In situ Spectroscopy: Delineating the mechanistic understanding of electrochemical energy reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1