Ao Wang , Gaoyue Zhang , Meng Li , Yuntong Sun , Yawen Tang , Kang Sun , Jong-Min Lee , Gengtao Fu , Jianchun Jiang
{"title":"Lignin derived hard carbon for sodium ion batteries: Recent advances and future perspectives","authors":"Ao Wang , Gaoyue Zhang , Meng Li , Yuntong Sun , Yawen Tang , Kang Sun , Jong-Min Lee , Gengtao Fu , Jianchun Jiang","doi":"10.1016/j.pmatsci.2025.101452","DOIUrl":null,"url":null,"abstract":"<div><div>Lignin-derived hard carbon (LHC) is considered one of the most promising anode materials for sodium-ion batteries (SIBs) due to its abundant and renewable feedstocks, tunable microstructure, and excellent electrochemical performance. In recent years, significant progress has been achieved in the development of LHCs. However, a comprehensive review and critical evaluation of the existing research remain lacking, hindering their further advancement. To address this gap, this review first introduces the fundamental properties of lignin and hard carbon to elucidate the microstructural formation processes of LHCs. Subsequently, the fabrication methods and key characteristics of LHCs, along with the effects of feedstock properties and operating parameters on their microstructure and performance, are systematically summarized and analyzed. Particular attention is given to optimization strategies, including feedstock pretreatment, preparation process regulation, and post-treatment, to provide practical guidance for enhancing the overall performance of LHCs. Finally, suggestions and future perspectives for advancing LHCs in SIB applications are proposed based on the current research landscape and practical demands. This review aims to offer scientific insights into the microstructural regulation and electrochemical performance optimization of LHCs, thereby promoting their broader application in SIBs.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"152 ","pages":"Article 101452"},"PeriodicalIF":33.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525000271","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin-derived hard carbon (LHC) is considered one of the most promising anode materials for sodium-ion batteries (SIBs) due to its abundant and renewable feedstocks, tunable microstructure, and excellent electrochemical performance. In recent years, significant progress has been achieved in the development of LHCs. However, a comprehensive review and critical evaluation of the existing research remain lacking, hindering their further advancement. To address this gap, this review first introduces the fundamental properties of lignin and hard carbon to elucidate the microstructural formation processes of LHCs. Subsequently, the fabrication methods and key characteristics of LHCs, along with the effects of feedstock properties and operating parameters on their microstructure and performance, are systematically summarized and analyzed. Particular attention is given to optimization strategies, including feedstock pretreatment, preparation process regulation, and post-treatment, to provide practical guidance for enhancing the overall performance of LHCs. Finally, suggestions and future perspectives for advancing LHCs in SIB applications are proposed based on the current research landscape and practical demands. This review aims to offer scientific insights into the microstructural regulation and electrochemical performance optimization of LHCs, thereby promoting their broader application in SIBs.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.